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Abstract: 

Background: Endocrine therapy is highly effective in blocking the estrogen receptor pathway 

in HR+/HER2- early breast cancer (EBC). However, up to 40% of patients experience relapse 

during or after adjuvant endocrine therapy. Here, we investigate molecular mechanisms 

associated with primary resistance to endocrine therapy and develop predictive models. 

Patients and Methods: In the WSG-ADAPT trial (NCT01779206), HR+/HER2- EBC patients 

underwent pre-operative short-term endocrine therapy (pET). Treatment response was 

determined by immunohistochemical in-situ labeling of cycling cells (G1 to M-phase) with 

Ki67 before and after pET. We performed targeted next generation sequencing and Infinium 

MethylationEPIC-based DNA methylation analysis post-pET in a discovery cohort (n=364, 

responder (R) and non-responder (NR) pairs matched for clinicopathologic features) and a 

validation cohort (n=270, unmatched). Predictive indices of endocrine resistance under both 

treatments were constructed using lasso penalized logistic regression. A subset of breast 

cancers from ‘The Cancer Genome Atlas’ project (TCGA-BRCA) was used for external 

validation.  

Results: TP53 mutations were prominently associated with primary resistance to both 

tamoxifen (TAM) and aromatase inhibitors (AI), with AI non-responders exhibiting resistance 

in up to 32% of cases. Additionally, we identified distinct DNA methylation patterns in TAM 

and AI non-responders, with TAM non-responders showing global DNA methylation loss, 

associated with KRAS signaling, apical junctions and epithelial-mesenchymal transition (EMT). 

Conversely, we observed methylation gain in AI non-responders affecting developmental 

transcription factors, hypoxia and estrogen signaling. TAM or AI resistance was associated 

with increased methylation-inferred proportions of immune cells and decreased proportions 
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of endothelial cells. Based on these findings and patient age, we developed the Predictive 

Endocrine ResistanCe Index (PERCI). PERCI stratified NR and R cases in both treatment groups 

and cohorts with high accuracy (ROC AUC TAM discovery 93.9%, validation 83%; AI discovery 

98.6%, validation 76.9%). A simplified PERCI efficiently predicted progression-free survival in 

the TCGA-BRCA sub-cohort (Kaplan-Meier log-rank p-value = 0.03 between low and high 

PERCI groups). 

Conclusions: We identified genomic and epigenomic features associated with primary 

resistance to TMA and AI. By combining information on genomic alterations, patient age, 

differential methylation and tumor microenvironment (TME) composition, we developed 

PERCI TAM and PERCI AI as novel predictors of primary resistance, with potential additional 

prognostic value. Applying PERCI in a clinical setting may allow patient-specific drug selection 

to overcome resistance. 

WSG-ADAPT, NCT01779206, Registered 2013-01-25, retrospectively registered. 
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Background 

Endocrine therapy is a highly effective treatment blocking the estrogen receptor pathway in 

breast cancer (BC). However, up to 40% of patients diagnosed with operable ER and/or PR-

positive (i.e. luminal) tumors relapse during or after adjuvant endocrine therapy [1]. Clinically, 

two patterns of resistance to endocrine therapy are recognized: primary, intrinsic resistance 

and secondary, acquired resistance. Acquired resistance is often attributed to activating 

mutations in the estrogen receptor (ESR1), whereas the mechanisms of intrinsic resistance 

are not fully understood [2–4]. In addition, the drug-specific effect of hormone therapy is an 

unresolved issue. Recent in vitro studies suggest that epigenomic mechanisms, including 

genome-wide reprogramming of the chromatin landscape and DNA methylation changes, 

contribute to the development of resistance to endocrine therapy [5–8].  

Neoadjuvant therapy trials or window trials with short-term endocrine treatment prior to 

surgery can help to study endocrine resistance. Effective endocrine therapy results in tumor 

cell growth arrest as evidenced by a decrease in the Ki67 labeling index [9–11]. Persistently 

high Ki67 expression despite hormone blockade identifies estrogen-independent 

proliferation, which is associated with an increased risk of disease recurrence and death. 

The WSG-ADAPT trial, which enrolled to date more than 5600 patients with luminal BC, 2290 

of whom in the endocrine-therapy subtrial, provides a novel approach to investigate 

endocrine resistance [12]. More than 70% of patients in the ADAPT trial responded to short-

term endocrine therapy with either tamoxifen or aromatase inhibitors. Non-responding 

tumors maintain their original growth rate despite hormone blockade, making them ideal 

candidates to study the mechanisms of primary endocrine resistance. 

https://paperpile.com/c/1OvF9r/kMHNV
https://paperpile.com/c/1OvF9r/FjfKe+iqByk+jPA7b
https://paperpile.com/c/1OvF9r/C1vRB+dXmRb+986xt+6F8iw
https://paperpile.com/c/1OvF9r/lMY2b+F8JAF+Zhj1M
https://paperpile.com/c/1OvF9r/MvFSp
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Fig. 1: Concept of the study. (a) In the WSG-ADAPT trial, patients with ER+ luminal BC were randomized to 

receive three weeks of preoperative endocrine therapy (pET) with tamoxifen (TAM) or aromatase inhibitors (AI). 

Treatment response was estimated by Ki67 staining post-pET compared to baseline staining. (b) In this study, 

we aimed to develop models to predict response to endocrine therapy. We selected patients for a discovery and 

a validation cohort and collected clinico-pathologic data, mutation status of selected cancer driver genes, and 

DNA methylation data at baseline and/or post-pET. For external validation, we used a subset of the TCGA-BRCA 

cohort that matched the selection criteria for our cohorts. (c) Flowchart of the sample selection for the discovery 

cohort (left, matched sample design) and the validation cohort (right, un-matched design). The numbers reflect 

the case selection for molecular examinations as of the beginning of the study. At this time, patients were still 

being recruited in ADAPT. Figure designed using BioRender. 
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In this study, a discovery and validation cohort of endocrine therapy responsive and non-

responsive patients was sub-sampled from the WSG-ADAPT trial (summarized in Fig. 1). We 

aimed to identify molecular mechanisms associated with the resistant phenotype and 

common pathways recurrently affected by different aberrations using targeted next-

generation sequencing and Infinium MethylationEPIC BeadChip-based DNA methylation 

analysis. We hypothesized that knowledge of the genetic and epigenetic aberrations in BC 

that are associated with endocrine resistance could provide biomarkers for the aggressive 

subtype of hormone receptor-positive luminal breast cancer and allow the development of 

predictive models for the response to endocrine therapy. As an external validation cohort, we 

planned to use a subset of the TCGA-BRCA cohort that was clinically matched to patients in 

our cohorts. The results of this study provide insight into the mechanisms of resistance to 

tamoxifen and aromatase inhibitors, and thus suggest a way to overcome resistance by 

switching to the drug that is not affected. 

Methods 

Study design and sample collection 

The ADAPT trial (NCT01779206 [12,13]) was a phase II, multicenter, controlled, nonblinded, 

randomly assigned, investigator-initiated trial performed in the framework of WSG-ADAPT 

umbrella protocol and at the Institute of Pathology, Hannover Medical School (MHH). We 

selected patients with early breast cancer who had ER-positive and/or progesterone receptor 

(PR)-positive, human epidermal growth factor receptor 2 (HER2)-negative tumors. The 

patients had received three weeks of preoperative endocrine therapy (pET) (tamoxifen (TAM) 

in premenopausal women and aromatase inhibitor (AI) in postmenopausal women). Baseline 

and post-pET tumor biopsies were obtained from all patients, and formalin-fixed, paraffin-

https://paperpile.com/c/1OvF9r/DuNiO+MvFSp
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embedded (FFPE) specimens were prepared. The Oncotype DX Recurrence Score (RS) of the 

baseline samples was determined at the Genomic Health Inc. laboratory, and all baseline and 

post-pET FFPE samples were submitted to immunohistochemistry at the ADAPT Study Central 

Reference pathology at Hannover Medical School (MHH). The expression of ER, PR, HER2, and 

the Ki67 cell proliferation marker were assessed using standardized methods as previously 

described [12]. Tumors with baseline Ki67 < 35% and of PR > 20% were classified as luminal 

A, whereas tumors with baseline Ki67 ≥ 35% and PR ≤ 20% were designated as luminal B 

subtypes.  

Response to endocrine therapy was determined by post-pET Ki67 and Ki67 decrease from 

baseline. In the discovery cohort (n=364) patients with post-pET Ki67 <10% and a relative 

decrease ≥ 70% were considered responders (R), and those with post-pET Ki67 ≥ 20% and a 

relative decrease ≤ 20% were considered non-responders (NR). The discovery cohort was 

divided into TAM (n=214) and AI treatment groups (n= 150), each with R and NR patients 

matched for histopathologic features, pT, pN, ER, PR, HER2 status and RS score at baseline. 

Tumors (R/NR) were also balanced for WSG central histologic grade. We included all sample 

pairs that met our selection criteria (flowchart in Fig. 1c, Supp. Table S1a). For the validation 

cohort (n= 270), we relaxed the selection criteria to allow inclusion of additional patients. 

Responders were defined as post-pET Ki67 <10%, and non-reponders had post-pET Ki67 ≥ 

20%. The response groups were not matched with respect to histopathologic features, RS 

score, or histologic grade. We included 75 TAM responders and 80 non-responders, and 67 AI 

responders and 48 non-responders (Fig. 1c, Supp. Table S1b). The TCGA-BRCA sub-cohort (n 

= 269) was sub-sampled from the TCGA-BRCA cohort to provide external validation of the 

prediction models. Selection criteria included ER status positive, HER2 status non-positive, 

https://paperpile.com/c/1OvF9r/MvFSp
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distant metastasis free (M0), no prior neoadjuvant therapy, and progression-free survival 

(PFS) information available (Supp. Table S2). Samples were divided into two groups based on 

menopausal status: TAM-like for premenopausal patients (n = 75) and AI-like for 

postmenopausal patients (n = 194). Histologic grade was determined using WHO criteria 

(information on tubule formation, pleomorphism, and cell proliferation from [14]). 

Statistical analyses 

In the discovery cohort, McNemar's test for symmetry was used to compare R and NR patients 

for clinical variables. In the validation cohort, the chi-squared test for trends was used to 

compare Ki67 at baseline and Ki67 post-pET, and Fisher's exact test was used for all other 

comparisons. The relationship between clinical variables and TAM and AI prediction scores 

was calculated using Spearman's rank correlation coefficient. 

Next generation target sequencing and variant calling 

After manual microdissection to enrich for invasive tumor cells, DNA was extracted from FFPE 

tissue using the Maxwell RSC DNA FFPE kit on a Maxwell RSC instrument (Promega). Quality 

control tests were performed to ensure that the DNA samples (n=362 from the discovery 

cohort and n=222 from the validation cohort) met the required criteria. Next-generation 

sequencing (NGS) was performed at the MHH using a S5 prime instrument (ThermoFisher 

Scientific). Two NGS panels were used to cover the complete protein coding regions of known 

driver genes and genes associated with endocrine resistance, as described previously [15]. 

The first panel was the Oncomine Comprehensive v3 assay (ThermoFisher Scientific), which 

included 161 genes and had the ability to also detect copy number variations. The second 

panel was a custom-made panel including the full-coding sequence of 17 genes (ABCA13, 

https://paperpile.com/c/1OvF9r/uy6nI
https://paperpile.com/c/1OvF9r/5ZQoL


 

9 
 

CBFB, CDH1, ERBB2, ERCC2, ESR1, FAT1, FAT2, FAT3, GATA3, MAP3K1, MUTYH, PIK3CA, 

RUNX1, RYR2, TBX3, TP53) to add regions of genes which are frequently mutated in BC and 

missing in the Oncomine Comprehensive v3 assay. Variant calling and functional annotation 

were performed using ANNOVAR software 

(http://annovar.openbioinformatics.org/en/latest/). Gene deletions were selected using a 

copy number cutoff ≤ 0.6 (upper CI ≤ 0.75). Gene amplifications were selected using a copy 

number cutoff ≥ 5.0 (lower CI ≥ 3.5). The results were manually curated to exclude FFPE-

related genetic artifacts. Statistical analysis was performed using Fisher's exact test to 

compare frequencies of recurrent genomic alterations (RGA) between responders and non-

responders in each treatment group. Only genes with a RGA frequency of at least 7.5% in one 

of the subgroups (TAM, AI, NR, R in the discovery or validation cohorts) were included in the 

analysis. 

DNA methylation pre-processing and cell type deconvolution 

DNA (range 84-1400 ng) was submitted to the DKFZ Genome and Proteome core facility for 

DNA methylation analysis using HumanMethylationEPIC (EPIC) BeadChips (Illumina, CA, USA), 

including an additional restore step for FFPE material. We downloaded reference datasets 

from GEO, including data for six immune cell types from six healthy subjects (GSE110554), 

human mammary fibroblast, human mammary epithelial cells, human mammary endothelial 

cells (GSE74877) [16], and human breast cancer cells (MCF7, GSE68379)[17]. Raw data were 

preprocessed using the RnBeads R package version 2.15.1 [18,19], with beta-mixture quantile 

normalization and no background correction. We filtered out probes with a SNP overlapping 

with the C nucleotide of the CpG site and a MAF > 0.01 (dbSNP 150), as well as probes with 

the last 3 bases in their target sequence overlap with a SNP (MAF > 0.05). We also removed 

cross-hybridizing probes [20,21] and non-CpG probes. We estimated the cell type 

http://annovar.openbioinformatics.org/en/latest/
https://paperpile.com/c/1OvF9r/Eadf2
https://paperpile.com/c/1OvF9r/PdBhv
https://paperpile.com/c/1OvF9r/wHPg0+luQKB
https://paperpile.com/c/1OvF9r/TFCAn+7dBeq
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composition using the Houseman algorithm [22] implemented in RnBeads, using the settings 

inference.max.cell.type.markers = 100000, inference.top.cell.type.markers = 500, and 

adjusted the results proportionally to a sum of 100%. For differential methylation analyses, 

raw data were preprocessed using the SeSAMe package [23] with linear dye-bias correction 

(dyeBiasCorr) and background subtraction using “noobsb”. We performed differential 

methylation analyses using “limma”, with age and sample processing (bulk or 

macrodissection) used as covariables. We defined differentially methylated CpG sites (DMS) 

as having a methylation difference > 10% and p-value < 0.005. To annotate DMS to genes, we 

developed a pipeline to map CpG sites represented on the EPIC array to the next transcription 

start site (TSS) using hg19 transcript information from the R package “EnsDb.Hsapiens.v75” 

[24]. The pipeline is available on Github at https://github.com/gk-

zhang/InfiniumEPICMethylation.hg19/tree/main. We performed gene set 

overrepresentation analyses using Molecular Signatures Database (MSigDB) hallmark gene 

sets [25]. DMS were annotated with chromatin states using published ChromHMM 

classification for MCF7 cells [26]. A consensus list of partially methylated domains (PMDs) in 

human breast cancer was constructed from Brinkman et al. [27], with occurrence in ≥9 of 30 

tumors and a size > 100kb (n= 2538 regions). We calculated MeTIL scores as described in [28]. 

For the TCGA-BRCA cohort, we downloaded Illumina HumanMethylation450 data from GDC 

(Genomic Data Commons Data Portal, https://portal.gdc.cancer.gov) and preprocessed the 

data with RnBeads using SeSAMe-adapted settings with scaling.internal for normalization and 

background subtraction using noobsb. We selected CpG sites overlapping between the EPIC 

and the 450k datasets and further preprocessed the data as described above. We built the 

450k models using the overlapping CpG sites.  

https://paperpile.com/c/1OvF9r/6J25m
https://paperpile.com/c/1OvF9r/3glbo
https://paperpile.com/c/1OvF9r/Rm4ZR
https://github.com/gk-zhang/InfiniumEPICMethylation.hg19/tree/main
https://github.com/gk-zhang/InfiniumEPICMethylation.hg19/tree/main
https://paperpile.com/c/1OvF9r/TI5pJ
https://paperpile.com/c/1OvF9r/zc0wx
https://paperpile.com/c/1OvF9r/fH95u
https://paperpile.com/c/1OvF9r/jfWeA
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The gene regulatory potential of our DMS was tested in the TCGA-BRCA sub-cohort matching 

our samples (n = 269) and DMS covered on the 450k array. Gene expression HTSeq FPKM-UQ 

quantification data were downloaded with the function GDCquery of R package TCGAbiolinks 

(version: 2.22.1) and used to compute Pearson and Spearman correlations between DMS beta 

values and log2 expression values.  

Building of the ‘Predictive Endocrine ResistanCe Index’ PERCI 

Predictive indices of endocrine resistance under either treatment were constructed within 

both discovery cohorts using lasso penalized logistic regression with the R package “glmnet” 

(version 4.1-3). Internal cross-validation was used to determine model hyperparameters [29] 

based on optimizing the quality of out-of-sample-prediction in terms of discrimination by 

ROC-AUC [30]. Only the samples with complete data for all characteristics were included (as 

shown in Supplementary Table S3). For each treatment group, the classifier was built using 

the beta values of the DMS with a minimum mean methylation difference of 10% between 

the responder and non-responder groups. In addition, we used the RGA (set as 0 for wild-type 

and 1 for detected alterations) with significantly different alteration frequencies (p<0.025) 

between the response groups. Other candidate predictor variables included patient age and 

cell type information, which was obtained from the methylation data. The prediction outcome 

was defined as the endocrine resistance outcome with a binary classification of R and NR. 

Different prediction models were developed by applying different cut-off p-values for 

differential methylation for the TAM and AI groups, respectively. The performance of the 

prediction models was evaluated by calculating the area under the receiver-operating curve 

(AUC) between the known classification result and the prediction scores (described below) by 

https://paperpile.com/c/1OvF9r/arHLi
https://paperpile.com/c/1OvF9r/wKxpK
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using the R package pROC (version: 1.18.0). The final models were selected based on the best 

AUCs in the validation cohort data of the TAM and AI groups, respectively. 

Each model is composed of predictors and coefficients. PERCI TAM and AI scores were 

calculated as the weighted sum of the predictor values multiplied by the model coefficients. 

The prediction scores were scaled to the range [0, 1] by dividing the original score by the 

difference between the theoretical maximum score and the theoretical minimum score. The 

theoretical maximum/minimum score was obtained by assigning a (beta) value of 1/0 to CpG 

sites or mutated genes with positive coefficients and 0/1 to those with negative coefficients. 

For patient age and cell type information, the median values of the discovery cohort data 

were used for the calculation of both theoretical maximum and minimum score.  

Accuracy, precision (= positive predictive value PPV) and recall from the output of the R 

package pROC were used as metrics to evaluate the performance of the prediction models. 

As a cutoff we defined the scaled PERCI score with the highest accuracy. F1 score was 

calculated as 2×precision×recall/(precision+recall). In the confusion matrix, responders are 

defined as controls and non-responders as cases. 

Constructing PERCI 450k  

To ensure wider applicability to publicly available Illumina 450k methylation datasets, we 

developed additional classifiers specifically tailored to this platform, limiting the input to CpG 

sites covered on the 450k array. We included methylation data from CpG sites with a 

minimum mean methylation difference of 5% between the responder and non-responder 

groups and p-values for differential methylation  of p ≤ 0.05 to p ≤ 0.00005. We also added 

patient age as a variable to the model. The same approach as described above was used to 

construct PERCI 450k models and produce the scaled scores. 
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Performance of the PERCI 450k models was tested in patients from the TCGA-BRCA sub-

cohort, subdivided in TAM- and AI-like groups. As endocrine treatment and response 

information was not available, the models were evaluated based on their ability to predict 

tumor progression-free survival (PFS) using the prediction scores. Survival analyses were 

performed using the R package “survival” (version 3.5-0), using the information of time to 

event (progression or censoring), limited to a follow-up time of 120 months. PERCI TAM 450k 

and PERCI AI 450k scores were used to classify the patients into low and high groups. The 

cutoffs were chosen by minimizing the p-value of the log-rank test. Fisher’s exact test was 

used to test the significant difference of clinic-pathological variables between the PERCI 450k 

score high and low groups (Supp. Table S2).  

Results 

Histologic grade changes correlate with Ki67 staining in response to preoperative endocrine 

therapy (pET) 

The response groups in the discovery cohort were well matched for clinico-pathologic 

characteristics at baseline (Suppl. Table S1a, S3). Cases treated with TAM tended to be of 

lower grade than those treated with AI. Response to short-term pET was reflected by changes 

in histologic grade from baseline to post-pET (Fig. 2a). In both treatment groups, >40% of 

responders decreased in grade, while many non-responders had a higher grade after pET 

(Supp. Fig. S1a). For both the TAM and AI groups, Spearman's rank correlation analysis 

confirmed high correlation between histologic grade and Ki67 staining at baseline and after 

pET (TAM baseline ρ=0.54, TAM post-pET ρ=0.69; AI baseline ρ=0.61, AI post-pET ρ=0.79, fdr-

corrected p-values < 0.01) (Supp. Fig. S2a). In the AI group, we observed a  
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Fig.2: Descriptive statistics of the cohorts. (a – f) Description of the discovery cohort (n = 364, TAM = 214, AI = 
150), (g - l) description of the validation cohort (n = 270, TAM = 155, AI = 115). Distribution of patients (R = 
responder, NR = non-responder) before (baseline) and after anti-hormone (post-pET) treatment according to: 
(a, g) tumor grade; (b, h) histology type; (c, i) progesterone receptor (PR ) status; (d, j) luminal subtype; (f, l) 
percentage of Ki67 positive staining in IHC. (e, k) Distribution of patients before endocrine therapy according to 
recurrence score (RS). Statistical differences of numerical variables between matched pairs as well as for 
baseline and post-pET comparisons were tested using paired Wilcoxon tests. All other comparisons of numerical 
variables were analyzed using non-paired Wilcoxon tests. Statistical differences of categorical variables between 
matched pairs as well as for baseline and post-pET comparisons were analyzed using McNemar test. All other 
comparisons of categorical variables were analyzed using Fisher’s exact test. For all statistical tests, asterisks *, 
**, ***,**** indicate p-values < 0.05, 0.01, 0.001, 0.0001. 
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significant reduction in PR staining after pET compared to baseline (AI responders p = 2.54e-

08, AI non-responders p=5.32e-04) (Fig. 2c). Combining Ki67 and PR staining information, we 

divided the patients into luminal A and B subtypes (Supp. Table S1a, S3). Over 40% of AI cases, 

but only 10% (R) and 19% (NR) of the TAM cases were categorized as LumB (Fig. 2d). Similar 

differences were also reflected in the OncotypeDX RS group distribution. Patients in the TAM 

group were predominantly in RS group 1 (28%) and RS group 2 (64%), whereas 48% of the AI-

treated cases were in RS group 2 and 40% in RS group 3 (Fig. 2e). Consequently, we observed 

a positive correlation with luminal subtypes (Kendall rank correlation test, TAM τ = 0.33; AI τ 

= 0.51, fdr-corrected p-value < 0.01)(Supp. Fig. S2c). In the TAM group, RS group annotations 

were weakly negatively correlated with hormone receptor staining at baseline (ER, ρ = -0.31; 

PR, ρ = -0.33, fdr-corrected p-values < 0.01). For the AI-treated cases, anti-correlation of RS 

score and PR staining was even more pronounced (baseline, ρ = -0.46; post-pET ρ = -0.47, fdr-

corrected p-values < 0.01)(Supp. Fig. S2a).  

As no matching protocol was used to select cases for the validation cohort, significant 

differences between responders and non-responders were observed in both treatment 

groups (TAM: histology, pT, grade, baseline Ki67, luminal subtype, RS group; AI: grade, 

baseline PR and Ki67 staining, luminal subtype, RS group) (Supp. Table S1b, S3). pET 

responders had consistently lower grades at baseline than non-responders in both treatment 

groups (TAM p=7.48e-04, AI p=1.67e-03)(Fig. 2g). Again, changes in histologic grading from 

baseline to post-pET reflected response or resistance to pET (Supp. Fig S1b). Grade and Ki67 

staining were highly correlated at baseline and post-pET in both treatment groups (TAM 

baseline ρ=0.67, TAM post-pET ρ=0.74; AI baseline ρ=0.70, AI post-pET ρ=0.77, fdr-corrected 

p-values < 0.01) (Supp. Fig. S2b), confirming our findings in the discovery cohort. We observed 

a significantly higher proportion of invasive lobular breast cancer (ILBC) in TAM responders 
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than in non-responders (R 29%, NR 3%), but not in AI-treated cases, with 15% ILBC in both 

response groups (Fig. 2h). Due to the unpaired selection protocol in the validation cohort, 

significantly (p=0.015) more AI non-responder than responders had weak PR staining (PR ≤ 

10%) prior to pET. We confirmed the decrease in PR staining after AI treatment in both 

response groups (AI-R p=1.06e-07, AI-NR p=6.33e-05) (Fig. 2i). In both treatment groups, non-

responders were significantly more often annotated as LumB subtype (Fisher’s exact test TAM 

p=6.2e-03, AI = 2.1e-06) (Fig. 2j) and had higher baseline RS scores than responders (Fisher’s 

exact test TAM p=1.9e-08, AI p= 2.1e-12) (Fig. 2k, and Supp. Table S1b). RS scores of TAM-

treated cases were positively correlated with grade at baseline and post-pET (ρ= 0.41 and 

0.41, fdr-corrected p-values < 0.01), and the latter observation was even stronger in AI-

treated cases (ρ= 0.56, fdr-corrected p-value < 0.01). In addition, RS scores in AI-treated cases 

showed a strong negative correlation with baseline PR staining (ρ = -0.5, fdr-corrected p-value 

< 0.01) (Supp. Fig. S2b). Finally, in both treatment groups, Ki67 staining at baseline was higher 

in non-responders than in responders (TAM p=1.18e-07, AI p=2.05e-05) (Fig. 2l, Supp. Tables 

S1b).  

In summary, TAM cases had lower grade and RS scores than AI cases in both cohorts. pET 

resulted in consistent changes in grade in both treatment groups, with responders lowering 

grade and non-responders changing to a higher grade. Grade was highly correlated with Ki67 

staining at both baseline and post-pET. PR staining was consistently lower post-pET than at 

baseline in AI responders and non-responders in both cohorts.  

Recurrent TP53 mutations in luminal BC promote resistance to pET 

We performed NGS panel sequencing to identify recurrent genomic alterations (RGA) that 

might indicate pET resistance (Supp. Table S4). Mutations of PIK3CA, GATA3, MAP3K1, and 

amplifications of CCND1, FGF3 and FGF19 on chr11q13.3 were most frequently detected in 
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both cohorts (Fig. 3a,b), confirming previously published observations [31–34]. None of these 

RGA were found to be significantly altered between R and NR cases in either TAM or AI 

treatment groups. The tumor/invasion suppressor gene E-cadherin (CDH1) is mutated in the 

majority of ILBC cases [33,35]. We detected frameshift and splice-site mutations in 10% and 

16% of the patients in the discovery and validation cohort, respectively, and confirmed 

significant enrichment of CDH1 mutations in ILBC (discovery cohort p=8.5e-11, validation 

cohort p<2.2e-16), with strong positive correlation with histology type (Kendall rank 

correlation τ = 0.61 to 0.81, fdr-corrected p-value < 0.01, Supp. Fig. 2c,d). CDH1 mutations 

were strongly anti-correlated with E-cadherin protein expression at baseline and post-pET in 

both treatment groups and cohorts (τ = -0.59 to -0.91, fdr-corrected p-value < 0.01, Supp. Fig. 

2c,d).  

In the discovery cohort, we detected point mutations in the ATP-binding cassette transporter 

13 (ABCA13) gene significantly more often in the TAM R group than in the TAM NR group 

(12.2% vs. 3.7%, p=0.024) (Fig. 3c). CBFB mutations were also significantly enriched in the 

TAM R group (17.7% vs. 5.6%, p=0.006) (Fig. 3c). This finding was confirmed in the validation 

cohort (TAM R 22.2%, TAM NR 6.4%, p=0.008) (Fig. 3d) and positively correlated with GATA3 

alterations (Kendall rank correlation, discovery cohort τ=0.3, validation cohort τ=0.3, fdr-

corrected p-value < 0.01) (Supp. Fig. S2c).  

https://paperpile.com/c/1OvF9r/auzPC+2JPT9+zB2au+3K4tk
https://paperpile.com/c/1OvF9r/HBupG+zB2au
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Fig. 3. Recurrent genomic alterations (RGA) in the (a) discovery cohort, and (b) validation cohort. Legend for (b) 
as in (a). Mutations, amplifications and deletions in post-pET samples, sorted by total alteration burden per 
cohort. Only RGA at minimum 7.5% recurrence in either sub-group are shown. The oncoprints summarize the 
mutational landscape of RGA regions in the present study, color-coded by the mutational event-type and 
separated into TAM R, TAM NR, AI R and AI NR. Clinical annotations of cases are indicated on the top. The barplot 
at the right quantifies the recurrence of each RGA in each cohort. (c, d) Frequencies of RGA with significant 
differences in discovery (c) and validation (d) cohort, statistical analyses using Fisher-exact test with *, **, *** 
p-value < 0.025, 0.01, 0.001. 
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In the AI discovery cohort, but not the validation cohort, we observed significantly more ESR1 

alterations in non-responders than in responders (12% vs. 0%, p=0.003) (Fig. 3c). Also, FGFR2 

amplifications were detected more frequently in the AI-NR group than in the AI-R group (9.3% 

vs. 0%, p=0.014) (Fig. 3c) and were positively correlated with histologic grade and Ki67 status 

(τ=0.29 and τ=0.27, fdr-corrected p-values <0.01) after treatment, as well as with TP53 

mutations (τ=0.31, fdr-corrected p-value <0.01)(Supp. Fig. S2c). As recently described by our 

group, TP53 mutations are significantly associated with therapy resistance to pET in both 

TAM- and AI-treated cases [15,36]. Consistent with these reports, significant enrichment of 

TP53 mutations in non-responding patients of both treatment groups in the discovery cohort 

(TAM p=0.032, AI p=0.011)(Fig. 3c) was confirmed in the validation cohort (TAM p=0.0008, 

fdr=0.099; AI p=0.00015, fdr=0.019)(Fig. 3d).  

In the validation cohort, TAM non-responders harbored significantly more alterations in AKT1 

(NR 9.0% vs. R 0%, p=0.014) and amplifications of FGF19 (NR 12.8% vs. R 2.8%, p=0.033) than 

TAM responders (Fig. 3d). Conversely, we detected significantly more TBX3 mutations in TAM 

responders (9.7%) than in non-responders (0%, p=0.005) (Fig. 3d). These significant 

differences were not observed in the discovery cohort. In TAM-treated cases, amplifications 

of CCND1, FGF3, and FGF19 on chr11q13.3 were positively correlated with grade (τ= 0.28 to 

0.34, fdr-corrected p-values < 0.01), Luminal Subtype (τ= 0.27 to 0.34, fdr-corrected p-values 

< 0.01) and baseline Ki67 (τ= 0.32 to 0.36, fdr-corrected p-values < 0.01) (Supp. Fig. S2d).  

To summarize, we found several significant differences in the incidence of RGA between 

responding and non-responding cases. TAM responders had consistently more CBFB 

mutations than non-responders in both cohorts. Amplifications of ESR1 and FGFR2 were 

selective for the AI NR group. With a frequency of up to 32% in AI NR cases, TP53 mutations 

https://paperpile.com/c/1OvF9r/5ZQoL+UfEuZ
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were most frequently associated with the development of resistance to endocrine therapy 

with TAM and AI. 

Different alterations in the DNA methylome and tumor microenvironment contribute to 

resistance to pET with TAM and AI 

Previous studies have reported that endocrine therapy resistance in breast cancer cell lines 

leads to adaptations in chromatin structure and DNA methylome [5–7]. In addition to our 

mutation screen, we performed methylation analyses on tumor tissue obtained post-pET 

using EPIC arrays covering 850.000 CpG sites. In the discovery cohort, we detected 472 

significantly (p<0.005) differentially methylated CpG sites (DMS) with ≥ 10% mean 

methylation difference between TAM NR and R groups, and 435 DMS between AI NR and R 

(Supp. Fig. S3a, DMS highlighted in red, Supp. Table S5). Nearly 70% of the TAM-DMS and 

40% of the AI-DMS were also differentially methylated in the validation cohort (Supp. Fig. 

S3b).  

Notably, we observed distinct methylation changes in the two treatment groups. In TAM-

treated cases, 90% of DMS were less methylated in non-responders compared to responders 

(Fig. 4a, NR<R indicated in dark blue on the right). Global loss of methylation has been 

associated with accelerated cell proliferation and the inability of a cell to re-methylate DNA 

in late-replicating regions after DNA doubling. This leads to the formation of ‘partially 

methylated domains’ (PMDs) in the nuclear periphery [37]. Using consensus PMD information 

from a recent breast cancer study [27], we confirmed that nearly 70% of all TAM DMS are 

located in PMDs (Fig. 4a, shown in dark green on the right). We further annotated the DMS 

with chromatin regions using information from the ER-positive MCF7  

https://paperpile.com/c/1OvF9r/C1vRB+dXmRb+986xt
https://paperpile.com/c/1OvF9r/0u4kK
https://paperpile.com/c/1OvF9r/fH95u
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Fig. 4. pET-specific alterations in the methylome and tumor microenvironment. (a,b) Heatmaps of methylation 

beta-values of significant differentially methylated CpG sites (DMS) for TAM- (a) and AI-treated cases (b). Clinical 

annotations of cases are indicated at the top. DMS with gain (NR>R) and loss (NR<R) in methylation in the non-

responder group, breast cancer partially methylated domains (PMDs), localization of DMS in MCF7-derived 

chromatin regions, and gene symbols of selected genes are indicated on the right. Rows (CpG sites) and columns 

(cases) are clustered by Euclidean distance and ward.D linkage. The heatmaps are split by response groups 

(columns) and by methylation change and location in PMDs (rows). Legend for heatmap and side annotations in 

(b) as in (a). (c,d) Cell type composition of breast cancer samples analyzed using a reference-based deconvolution 

method in the discovery (c) and validation cohort (d). R and NR groups per pET were compared using Wilcoxon 

test with *, **, *** fdr-adjusted p-values < 0.05, 0.01, 0.001. 
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cell line [26]. We found that 80% of TAM DMS were located in tightly packed heterochromatin 

and repressed regions, which overlapped strongly with PMD regions (Fig. 4a, Supp. Fig. S3c, 

upper panel).  

In contrast to the TAM group, approximately 80% of DMS were higher methylated in AI NR 

vs. AI R cases (Fig. 4b, NR>R shown in yellow on the right). The majority of AI DMS were 

located outside of PMDs, suggesting a gene-regulatory function. Indeed, about 40% of the 

DMS were located in enhancer and promoter regions or overlapped with insulator protein 

CTCF binding or transcribed regions (Supp. Fig. S3c, lower panel). Gene set 

overrepresentation analysis using MSigDB hallmark gene sets suggested that resistance to 

TAM pET may be associated with KRAS signaling, apical cell-cell junctions and epithelial-

mesenchymal transition (Supp. Fig. 3d).  

We used data for the TCGA-BRCA sub-cohort as a surrogate to calculate correlation 

coefficients for correlations between methylation and gene expression for the subset of DMS 

represented on Illumina 450k arrays (Supp. Table S5). Although most of the AI DMS had 

higher methylation levels in NR vs. R, indicating gene silencing, we identified a group of 

developmental transcription factors with positive correlations between methylation and gene 

expression, indicating gene upregulation. In addition, AI-DMS-associated genes were 

enriched in gene sets related to hypoxia and estrogen response (Supp. Fig. 3d).  

Several lines of evidence suggest that the tumor microenvironment (TME) is involved in the 

development of resistance to TMA and AI treatment [38]. We used publicly available 

reference methylation datasets for various cell types (Methods) to estimate the composition 

of the TME in our samples. In pET-resistant patients, we consistently computed higher 

immune cell proportions, accompanied by reduced proportions of fibroblasts and endothelial 

https://paperpile.com/c/1OvF9r/zc0wx
https://paperpile.com/c/1OvF9r/BGxij
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cells (Fig. 4c,d). The percentage of stromal tumor-infiltrating lymphocytes in pathologic tissue 

sections (PaTILs) significantly correlated with TIL levels derived from methylation data 

(MeTILs) (discovery cohort, ρ = 0.555, p < 2.2e-16; validation cohort ρ = 0.464, p = 3.2e-13, 

Supp. Fig. S3e). Our MeTIL percentages also highly correlated with MeTIL scores calculated 

according to [28] (discovery cohort, ρ = 0.638, p < 2.2e-16; validation cohort ρ = 0.697, p < 

2.2e-16). When stratified according to immune cell type, CD4+ cells were most abundant, but 

increased immune cell infiltration in pET-resistant tumors was not linked to any particular 

immune cell type (Supp. Fig. S3f,g). 

Overall, differential methylation analysis revealed distinct profiles of methylation changes in 

breast cancer patients treated with TAM and those treated with AI. TAM DMS were often less 

methylated in the NR vs. R group and were associated with PMDs. Conversely, AI DMS were 

more highly methylated in the NR vs. R group, located in gene regulatory regions and 

associated with developmental transcription factors, hypoxia and estrogen signaling. In both 

treatment groups, we computed changes in TME cell composition with increased immune cell 

infiltration and decreased fibroblast and endothelial cell proportions associated with 

treatment resistance. 

Developing the ‘Predictive Endocrine ResistanCe Index’ PERCI 

After identifying significant differences between responders and non-responders in the 

discovery cohort, we used lasso penalized logistic regression on these features to train 

classifiers for TAM and AI resistance, which we named ‘Predictive Endocrine ResistanCe Index’ 

(PERCI) (Fig. 5a). PERCI TAM consists of age information, endothelial cell content, ABCA13 

mutations, and methylation data for 29 TAM DMS with different weights (Fig. 5b, left panel). 

Most of the predictive CpG sites were hypomethylated in the non-responder  

https://paperpile.com/c/1OvF9r/jfWeA
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Fig. 5. Developing the ‘Predictive Endocrine ResistanCe Index’ PERCI. (a) Workflow for the development of the 

Predictive Endocrine ResistanCe Index (PERCI). (b) Heatmap of z-scores for features selected to construct PERCI 

TAM (left panel) and PERCI AI (right panel). The coefficients on the right indicate the weights of each feature. (c) 

Area under the receiver operating characteristic curve (AUC) analysis of PERCI performance in the discovery and 

validation cohorts. The x-axis shows the specificity, while the y-axis shows the sensitivity. AUC with 95% 

confidence intervals. 
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groups, and about half of them were located in heterochromatic regions (Supp. Tables S3, 

S5). Five selected CpG sites (cg15042080, cg16766325, cg04286030, cg18396984, 

cg15332750) had higher methylation in non-responders than in responders. The inverse 

correlation of cg16766325 methylation, located in the SPRY2 promoter, with gene expression 

in the TCGA-BRCA sub-cohort (Pearson correlation r = -0.423, fdr-adjusted p-value = 4.11E-

12) may indicate functional relevance in gene regulation. The individual predictors achieved 

an area under the receiver operating characteristic curve (ROC AUC) of 54.8 (for ABCA13 

mutations) to 72% (for cg01838965) in the discovery cohort (Supp. Fig. S4). By combining all 

features, PERCI TAM stratified responders and non-responders with a ROC AUC of 93.9%, (Fig. 

5c, left panel), with very good accuracy and positive predictive value (PPV) (Table 1). Strong 

performance was confirmed in the validation cohort, with a ROC AUC of 83%. Testing 

frequencies of correctly and incorrectly annotated cases in a confusion matrix suggests that 

the PERCI TAM is better at predicting NR than R in both cohorts.  

Table 1: Performance of PERCI and PERCI 450k in the discovery and validation cohorts 

 Discovery cohort Validation cohort 

 PERCI TAMa PERCI AIa PERCI TAM PERCI AI 

ROC AUC 93.9% 98.6% 83.0% 76.9% 

Accuracy 0.856 0.946 0.750 0.719 

Recall 0.827 0.919 0.661 0.792 

Positive predictive value (PPV) 0.878 0.971 0.765 0.717 

Negative predictive value (NPV) 0.838 0.923 0.740 0.722 

F1 score 0.851 0.944 0.709 0.752 

 PERCI TAM 

450kb 

PERCI AI 450kb PERCI TAM 450k PERCI AI 450k 

ROC AUC 95.7% 97.1% 80.2% 85.5% 

Accuracy 0.885 0.926 0.734 0.787 

Recall 0.923 0.946 0.746 0.896 

Positive predictive value (PPV) 0.857 0.909 0.698 0.754 

Negative predictive value (NPV) 0.918 0.943 0.769 0.844 

F1 score 0.889 0.927 0.721 0.819 

a: using a cutoff of 0.423 for the scaled PERCI TAM and a cutoff of 0.403 for the scaled PERCI AI 

b: using a cutoff of 0.409 for the scaled PERCI TAM 450k and a cutoff of 0.379 for the scaled PERCI AI 450k 
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PERCI AI includes patient age, ESR1, FGFR2, and TP53 genomic alterations, normal and tumor 

epithelial, endothelial and immune cell proportions, and methylation information for 17 AI 

DMS, most of which gained methylation in the AI non-responder group (Fig. 5b, right). 

Hypermethylated cg18922524, located in the promoter region of the homeobox transcription 

factor HOXC4, was exceptional as it was the CpG site with the strongest positive correlation 

with HOXC4 mRNA levels (pearson correlation r = 0.475, fdr-corrected p-value = 1.13E-15) out 

of 12 AI DMS associated with the same gene (Supp. Table S3, S5), indicating increased gene 

expression. The individual CpG sites selected for PERCI AI reached ROC AUC values of 67.1 to 

74.4% (Supp. Fig. S5), and all features combined stratified the NR and R groups with an AUC 

of 98.6% and excellent accuracy and true positive rate (PPV) (Fig. 5c, right panel; Table 1). As 

with PERCI TAM, the specificity of correctly annotating NR was higher than the sensitivity. In 

the validation cohort, we obtained an AUC of 76.9%. In this cohort, PERCI AI was better at 

correctly predicting the responder group.  

Both PERCI TAM and PERCI AI correlated strongly with post-pET histology grade and Ki67 

staining, with Spearman correlation coefficients ρ ranging from 0.55 to 0.78 in the discovery 

cohort (fdr-corrected p-values < 0.01) (Supp. Fig. S2a) and from 0.42 to 0.64 in the validation 

cohort (fdr-adjusted p-values < 0.01) (Supp Fig. S2b). Of note, in the discovery cohort, PERCI 

TAM and PERCI AI did not correlate with the Oncotype DX recurrence score (Suppl. Fig. S2a). 

In summary, our novel predictors of resistance to TAM and AI therapy, PERCI TAM and PERCI 

AI, combine information on genomic alterations, patient age, TME composition and 

differential methylation, and with ROC AUCs of 83% for TAM and 76.9% for AI showed very 

good performance in the validation cohort. 
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Adapting PERCI to the Illumina 450k platform and validation in the TCGA-BRCA cohort  

The multi-criteria nature of PERCI may limit its applicability in clinical settings where not all 

data modalities may be readily available. For this reason, we trained a more streamlined 

version of PERCI, following the same approach as described above, but using only methylation 

data and age as input. In view of the widely available 450k Illumina array data, we restricted 

CpG sites to those that overlapped between EPIC and 450k arrays, with mean methylation 

differences between the R and NR groups in the ADAPT discovery cohorts of at least 5% and 

various significance thresholds (Methods). PERCI TAM 450k contains age and methylation 

information for 41 CpG sites, most of which were again hypomethylated in the TAM-NR group 

(Supp. Fig. S6a). Although the feature selection was independent, ten CpGs overlapped with 

PERCI TAM features. For PERCI AI 450k, in addition to age, 19 predominantly hypermethylated 

CpG sites were selected, eight of which overlapped with PERCI AI features (Supp. Fig. S6b). 

Both 450k-compatible versions of PERCI performed as well as or better than PERCI in the 

ADAPT cohorts, with ROC AUC >95% in the discovery and >80% in the validation cohorts 

(Table 1, Supp. Fig. S6c).  

To test these classifiers in an external cohort, we used published TCGA-BRCA data and 

selected 296 cases with methylation data available and matching our cohort selection criteria 

(Methods). Patients were stratified by menopausal status in a TAM-like cohort (n=75) and an 

AI-like cohort (n=194) (clinico-pathologic characteristics in Supp. Table S2, S6). We divided 

each cohort into PERCI 450k high and low groups, using progression-free survival within 10 

years as a surrogate for information on response to endocrine therapy. The group with high 

PERCI TAM 450k had 49 cases, whereas the low group had 26 cases (Fig. 6a, left  
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Fig. 6. PERCI 450k predicts progression-free survival in the TCGA-BRCA sub-cohort. (a) Heatmap of selected 

features to construct PERCI TAM 450k (left panel) and PERCI AI 450k (right panel) in the TCGA-BRCA sub-cohort. 

(b) Kaplan-Meier curves of progression-free survival in the TCGA-BRCA sub-cohort on the basis of PERCI TAM 

450k (upper) and PERCI AI 450k scores (lower). Cases were divided into high and low groups (blue: low, good 

prognosis, red: high, poor prognosis) using a cutoff of 0.424 for the scaled PERCI TAM 450k and a cutoff of 0.4011 

for the scaled PERCI AI 450k. P values were calculated using the log-rank test. Hazard Ratios (HR) and their 95% 

CIs were estimated by an univariate proportional hazards regression. (c) Comparative clinical pathology of PERCI 

450k low and high groups in the TCGA-BRCA sub-cohort. Statistical differences of variables were analyzed using 

Fisher’s exact test with *, ** p-value < 0.05, 0.01. 
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panel). A Kaplan-Meier plot exhibited excellent stratification of these subgroups of treatment-

naive cases. Patients in the PERCI TAM 450k low group had a favorable prognosis, as there 

were no instances of disease progression within the span of 10 years (log-rank p value = 0.03, 

Fig. 6b, upper panel). In addition, the PERCI TAM 450k low group had a significantly higher 

number of cases with the ILBC subtype compared to the PERCI TAM 450k high group (p=0.032, 

Fig. 6c, Supp. Table S2, S6), confirming our observations in the validation cohort (Fig. 2h). 

The PERCI AI 450k high group (Fig. 6a, right panel) consisted of 51 cases with a significantly 

worse prognosis than low group, with a hazard ratio of 3.27 for disease progression (log-rank 

p=0.038, Fig. 6b, lower panel). Cases in the PERCI AI 450k high group were younger (p=1.9e-

03) and had higher stages (p=0.026) and histologic grades (p=0.026) compared to the PERCI 

AI 450k low group (Fig. 6c, Supp. Table S2, S6).  

In conclusion, these data suggest that PERCI may not only be a predictor of primary endocrine 

resistance but may also have prognostic value. 

Discussion 

The clinical definition of endocrine resistance implies progression or relapse of BC during 

endocrine therapy over a period of six months to two years [39]. If a test for primary 

endocrine resistance were available prior to initiation of endocrine therapy, inadequate 

therapy could be avoided or substituted. Consequently, this study aimed to characterize and 

compare molecular alterations associated with primary resistance to tamoxifen and 

aromatase inhibitor treatment and to use these features to develop classifiers for predicting 

treatment response and resistance.  

https://paperpile.com/c/1OvF9r/s2ao
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Biologically, primary endocrine resistance can be assessed by a diminished or absent 

proliferative response of breast cancers to short-term preoperative endocrine therapy, as 

evidenced by in situ detection of the strictly proliferation-associated nuclear Ki67 antigen 

[9,12,40]. The considerable heterogeneity of luminal BC requires the analysis of a large 

number of cases. Our study included a total of 634 patients and had greater power to detect 

significant differences between response groups than earlier smaller studies using a similar 

approach [41,42]. Our study design was unique as it used tumor tissue from a unique 

prospective clinical trial (ADAPT) and different selection criteria for a discovery and a 

validation cohort. More specifically, the discovery cohort included equal numbers of 

responders and non-responders to pET, contrary to previous studies in this field [32,41]. In 

addition, responders and non-responders were precisely matched for several 

clinicopathologic characteristics to exclude confounding effects related to differences in 

baseline tumor characteristics between responders and non-responders. For example, both 

responders and non-responders had equal proportions of G3-differentiated BCs (Fig. 2a, 

Supp. Table S1a). Thus, subsequent molecular analyses were informative of pET response 

determinants and were not biased by dominant molecular features associated with G3 

differentiation. In addition, the criteria for endocrine response and non-response were 

particularly stringent (see selection criteria). In contrast, the validation cohort had more 

relaxed selection criteria and was more representative of the patient populations 

encountered in clinical practice (Fig. 2g-l, Supp. Table S1b). Therefore, in combination, our 

study design was well suited for the identification of informative markers of pre-operative 

treatment failure in the discovery cohort and their validation under representative clinical 

conditions in the validation cohort. 

https://paperpile.com/c/1OvF9r/h2U7b+lMY2b+MvFSp
https://paperpile.com/c/1OvF9r/qZEBz+5EIyn
https://paperpile.com/c/1OvF9r/2JPT9+qZEBz
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The mechanisms driving the development of primary endocrine therapy resistance can be 

diverse [43]. To develop our Predictive Endocrine Resistance Indices (PERCI), we combined 

clinico-pathologic data with data on significant recurrent genomic alterations and epigenetic 

changes associated with pET resistance after three weeks of TAM or AI treatment. To select 

the most informative features, we used a machine learning approach based on lasso 

penalized logistic regression [44] (Fig. 5). For PERCI AI, the algorithm selected genomic 

alterations in ERS1, FGFR2 and TP53, key cancer driver genes that were enriched in AI non-

responders, while PERCI TAM was based on a higher mutation frequency of ABCA13 in TAM 

responders.  

Somatic mutations linked with primary resistance are commonly detected through their 

prevalence in metastatic lesions when compared to primary breast cancer [45]. Considerable 

progress was achieved by the discovery of ESR1 mutations, which are only rarely found in 

primary luminal cancers (<1%) but are enriched in up to 15%-30% of cases in metastatic 

luminal cancers during adjuvant anti-endocrine therapy and lead to ligand-independent 

autocrine growth of tumor cells. In our discovery cohort, we detected ESR1 mutations and 

amplifications in 12% of AI non-responders, but in none of AI responders. Consistently, 

Ferrando et al. detected ESR1 amplifications enriched in metastatic lesions of BC cases as 

compared to primary tumors exclusively in patients treated with adjuvant AI, but not in TAM-

treated patients [46]. FGFR2 amplifications were also enriched predominantly in AI non-

responders. Mao et al. previously reported an increase in FGFR2 amplification in post-

resistance biopsies treated with ER-targeted therapy [47]. Enrichment in metastatic luminal 

BC has also been demonstrated for TP53 mutations, with an incidence of more than 25% in 

metastases [45]. As reported recently by us [15], our method to identify primary resistance 

https://paperpile.com/c/1OvF9r/1YrfV
https://paperpile.com/c/1OvF9r/X3wMC
https://paperpile.com/c/1OvF9r/fv3NU
https://paperpile.com/c/1OvF9r/JBqhU
https://paperpile.com/c/1OvF9r/hvnZR
https://paperpile.com/c/1OvF9r/fv3NU
https://paperpile.com/c/1OvF9r/5ZQoL
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by evaluating the lack of proliferative response of breast cancer to short-term endocrine 

therapy revealed TP53 to be the most commonly mutated gene associated with therapy 

failure in the discovery cohort (avg. mutation rate of 15%)(Fig. 3c). These findings were 

confirmed for both treatment regimens in the validation cohort (Fig. 3d). These results 

suggest that the two approaches to assessing mechanisms of endocrine resistance yield 

overlapping information and support the relevance of these RGA as features in PERCI. In line 

with this, Gellert et al. reported reduced suppression of Ki67 within the poor responder group 

for TP53 mutant tumors in ER-positive BC treated with AI for 2 weeks [41]. As TP53 mutations 

lead to aberrant nuclear accumulation of the mutant p53 protein [48], p53 IHC may 

potentially be used as a surrogate marker for endocrine resistance in a clinical setting [36]. 

In contrast to the genomic alterations included in PERCI AI, mutations in ABCA13 (ATP Binding 

Cassette Subfamily A Member 13), which were included as a feature in PERCI TAM, indicated 

better response to treatment (Fig. 3c). ABC transporters, such as ABCA13, contribute to the 

development of therapy resistance by ATP-dependent drug efflux [49]. Therefore, 

inactivation through point mutations could potentially enhance therapy response. Gellert et 

al. reported a slightly elevated (but statistically insignificant) prevalence of ABCA13 mutations 

in patients responsive to AI treatment [41].  

Another interesting gene with mutations enriched in the TAM responder group, which was 

not included in PERCI TAM, is CBFB (Core-Binding Factor Subunit Beta) (Fig. 3c,d). The CBFB 

gene encodes the RUNX transcriptional coregulator CBFβ, which has an important function in 

transcriptional and translational regulation [32,50]. With a frequency of 17.9% and 22.2% of 

CBFB mutations in the discovery and validation cohorts, our results showed a significant 

increase in splicing and frameshift mutations compared to TAM non-responders (Fig. 3c,d). 

https://paperpile.com/c/1OvF9r/qZEBz
https://paperpile.com/c/1OvF9r/RJpBJ
https://paperpile.com/c/1OvF9r/UfEuZ
https://paperpile.com/c/1OvF9r/XZ78Q
https://paperpile.com/c/1OvF9r/qZEBz
https://paperpile.com/c/1OvF9r/2JPT9+UgWBF
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Consistently, a recent analysis of CBFB mutation patterns in two large breast cancer cohorts 

(METABRIC, TCGA-BRCA) concluded that CBFB mutations are associated with improved 

survival in HR+/HER2- patients [51], although the underlying mechanisms are not completely 

understood [52]. 

In addition to genomic alterations and age, PERCI TAM and PERCI AI included DNA 

methylation differences between responders and non-responders and epigenetically 

informed cell type composition (Fig. 4,5). CpG sites selected for PERCI TAM were mainly lower 

methylated in TAM non-responders. Global methylation loss in large regions of 

heterochromatin represents one of the hallmarks of cancer epigenomes and is mediated by 

increased cell proliferation [27,37]. In contrast, cg16766325 in the SPRY2 promoter region 

was hypermethylated in TAM non-responders, indicative of SPRY2 downregulation (Supp. 

Table S5). SPRY2 inhibits cell proliferation by acting as a feedback inhibitor of the RAS-MAPK 

pathway downstream of FGF/FGFR [53], and loss of SPRY2 expression was recently shown to 

promote cancer-associated fibroblast activation and BC progression [54]. In line with these 

findings, KRAS signaling, apical cell-cell junctions, and epithelial-mesenchymal transition 

(EMT) were identified as the most enriched gene sets associated with differential methylation 

in the TAM group (Supp. Fig. S3) and might promote TAM resistance [43,55,56]. 

The DNA methylome associated with AI resistance was characterized by a predominant gain 

in methylation, in contrast to the prominent loss of methylation observed in TAM non-

responders. Accordingly, AI DMS included as features in PERCI AI were mostly 

hypermethylated in AI non-responders. Interestingly, for a subset of these hypermethylated 

genes methylation positively correlated with gene expression. Many of these 

hypermethylated, upregulated genes belonged to the family of developmental transcription 

https://paperpile.com/c/1OvF9r/gK1Ke
https://paperpile.com/c/1OvF9r/aW2Zp
https://paperpile.com/c/1OvF9r/fH95u+0u4kK
https://paperpile.com/c/1OvF9r/3jCmA
https://paperpile.com/c/1OvF9r/k0Xmn
https://paperpile.com/c/1OvF9r/T2KRI+g8YNR+1YrfV
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factors [57] and have been previously implicated in breast cancer etiology and the 

development of endocrine resistance [58], including GATA2 [59], HOXC4 [60], HOXB13 [61], 

HOXC13 [62],  MNX1 [63], OTX1 [64], PAX7, SOX2 [65] and WT1 [66]. Notably, one of the 12 

AI DMSs associated with HOXC4 was included in both AI models. Consistent with our findings, 

HOXC4 hypermethylation was identified as a biomarker of endocrine resistance in a study 

analyzing a small subset of 31 TCGA-BRCA cases that had received endocrine therapy [67]. In 

addition, the authors identified epithelial-stromal interaction 1 (EPSTI1) promoter 

hypermethylation associated with endocrine resistance, and two AI DMSs (cg01536987, 

cg22905097) overlapped with the differentially methylated region identified in this previous 

study. EPSTI1 is overexpressed in aggressive breast cancer and may confer breast 

stem/progenitor cell properties [68]. In our study, we detected weak inverse correlation of 

cg01536987 methylation with gene expression in the TCGA-BRCA sub-cohort (Supp. Table 

S5).  

Gene set overrepresentation analyses indicated that AI-DMS-associated genes were enriched 

in gene sets related to hypoxia [69] and estrogen response (Supp. Fig. S3d). These findings 

suggest that resistance to AI therapy may be due to an altered response to hypoxic conditions. 

In a previous report by Oshi et al., three months of neoadjuvant AI was shown to reduce 

expression of hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis 

[70]. Oshi et al. also linked low expression of early estrogen response genes to a reduced 

response to endocrine therapy [70]. Consistent with these findings, Jeong et al. demonstrated 

that re-expression of the epigenetically silenced early estrogen response gene ELOVL2 

rescued its downstream signaling and TAM sensitivity in TAM-resistant MCF7 cells and in a 

xenograft mouse model [71]. In our study, cg14153064 located in the promoter region of 

https://paperpile.com/c/1OvF9r/0i2Nr
https://paperpile.com/c/1OvF9r/XcagJ
https://paperpile.com/c/1OvF9r/3ZrBE
https://paperpile.com/c/1OvF9r/QMKvw
https://paperpile.com/c/1OvF9r/VPB3T
https://paperpile.com/c/1OvF9r/qpait
https://paperpile.com/c/1OvF9r/BKgq4
https://paperpile.com/c/1OvF9r/XatbW
https://paperpile.com/c/1OvF9r/Xcvq9
https://paperpile.com/c/1OvF9r/Dm33I
https://paperpile.com/c/1OvF9r/Tq8Rd
https://paperpile.com/c/1OvF9r/I9smD
https://paperpile.com/c/1OvF9r/X3OI0
https://paperpile.com/c/1OvF9r/KXDSi
https://paperpile.com/c/1OvF9r/KXDSi
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ELOV2 was significantly hypermethylated in AI non-responders (Supp. Table S5).  

Given that DNA methylation is a stable epigenetic mark of cellular identity [72], we used 

reference DNA methylomes to infer bulk tumor and tumor microenvironment composition. 

As experimental validation, we observed high correlation of bioinformatically-estimated 

tumor-infiltrating lymphocytes (TIL) proportions with pathologically-determined TIL levels in 

both cohorts (Supp. Fig. S3). Proportions of normal and tumor epithelial cells, immune cells, 

and endothelial cells, were selected as features of PERCI AI. The proportions of normal and 

tumor epithelial and immune cells did not differ between responders and non-responders 

and had only minor contributions to the model. However, because bulk methylation values 

are affected by tumor purity and tumor purity thus indirectly affected PERCI scores, samples 

with high normal and tumor epithelial cell content (and conversely low immune cell content) 

had the lowest and highest PERCI AI scores in the responder and non-responder groups, 

respectively. We also noticed that samples with TP53 mutations seemed to be enriched in 

immune cells, indicating that there might be some interaction between features. 

A limitation to the use of our classifiers in clinical settings may be sample size, quality of DNA 

from FFPE tissue, or instrumentation and budget constraints that limit the generation of high-

quality NGS data to identify mutation status for the genes included in the classifiers [73]. To 

circumvent this potential limitation, we generated a simplified version of PERCI, PERCI 450k, 

based only on DNA methylation and age (Supp. Figure S6). The feasibility of using DNA 

methylation as a cost-effective classifier in clinical samples has been demonstrated in brain 

tumors [74], where methylation-based profiling has now been incorporated into the WHO 

classification of central nervous system tumors [75]. In our cohorts, PERCI 450k performed as 

well as or better than PERCI in stratifying responders and non-responders, with ROC AUCs 

https://paperpile.com/c/1OvF9r/RZLEC
https://paperpile.com/c/1OvF9r/nTzLF
https://paperpile.com/c/1OvF9r/hnFPG
https://paperpile.com/c/1OvF9r/W9p9J
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above 80% even in the validation cohort (Table 1). In addition, PERCI 450k showed promise 

as a prognostic marker in predicting progression-free survival in the TCGA-BRCA sub-cohort 

(Fig. 6). 

Conclusions 

This study has shown that the cellular pathways of endocrine resistance to TAM and AI are 

affected by distinct genetic and epigenetic alterations. The delineation of differences 

between the mechanisms of endocrine resistance between the two mainstays of standard 

endocrine therapy in BC opens the perspective of overcoming it by switching from one drug 

to the other. PERCI as a biomarker of endocrine resistance can be readily used for risk 

stratification in future therapeutic trials in BC.  
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Supplementary Fig. S1. Endocrine therapy-induced changes in histologic grade from baseline to post-pET in the 
discovery (a) and validation cohort (b). Statistical differences tested using Chi-squared test with p-value **** < 
0.0001. 
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Supplementary Fig. S2. Correlations of clinical features with TME components, PERCI scores and mutations. 

Spearman correlation coefficients were calculated between selected features in the discovery (a) and validation 

cohort (b) for the TAM and AI groups. Correlations are indicated by a color gradient from purple (rho = -1) to 

green (rho = 1). (c,d) Kendall correlation for ordinal clinical data and mutation counts in the (c) discovery cohort, 

(d) validation cohort for the TAM and AI groups. Only results with statistically significant differences between 

response groups are shown (two-tailed test of significance which compares the observed value of correlation 

coefficient to its expected value under the null hypothesis (no correlation between the two variables), fdr-

corrected p-value < 0.01). 
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Supp. Fig. S3: pET resistance-related alterations in the methylome and tumor microenvironment. (a) Density 

plots of mean methylation beta values of responder vs. non-responder groups (blue dots) for TAM- (upper panel) 

and AI-treated cases (lower panel) in the discovery cohort. Differentially methylated CpG sites (DMS) with a 10% 

methylation difference between R and NR (p < 0.005, limma) are highlighted in red (TAM: n=472 DMS, AI: n=435 

DMS). Numbers of DMS with loss (NR < R) and gain in methylation in the NR group (NR > R) are indicated in the 
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corners. (b) Density plots of mean methylation beta values of R vs. NR groups (blue dots) for TAM- (upper panel) 

and AI-treated cases (lower panel) in the validation cohort. DMS from (a) with a 5% methylation difference 

between R and NR (p < 0.05, limma) are highlighted in red (TAM: n=328 DMS, AI: n=174 DMS). (c) Percentage of 

DMS, split in hypo- and hypermethylated in NR, overlapping with chromatin regions derived from ChromHMM 

analyses of MCF7 cells (upper: TAM, lower: AI). (d) GSEA overrepresentation analysis of genes associated with 

TAM-DMS (upper) and AI-DMS (lower) in MSigDB hallmark gene sets. (e) Scatter plot depicting percentage of 

stromal TILs quantified by visual assessment on routine hematoxylin and eosin (H&E)-stained slides (PaTILs) vs. 

percentage of methylation-derived TILs (MeTILs, sum of CD4+, CD8+, B cell and NK cell percentages). Spearman's 

rank correlation coefficient rho and p-value for the correlation between both methods is indicated. (f,g) Boxplots 

of major immune cell fractions calculated from methylation data using the reference-based Houseman algorithm 

(Methods) in the discovery (f) and validation cohort (g). R and NR groups per pET were compared using Wilcoxon 

test with *, **, *** fdr-adjusted p-value < 0.05, 0.01, 0.001. 
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Supp. Fig. S4: ROC AUC of all predictors of PERCI TAM. Area under the receiver operating characteristic curve 
(AUC) of the full model (upper left) and the individual predictors of PERCI TAM in the TAM discovery cohort. The 
x-axis shows the specificity, while the y-axis shows the sensitivity.  
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Supp. Fig. S5: ROC AUC of all predictors of PERCI AI. Area under the receiver operating characteristic curve 
(AUC) of the full model (upper left) and the individual predictors of PERCI AI in the AI discovery cohort. The x-
axis shows the specificity, while the y-axis shows the sensitivity.  
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Supp. Fig. S6: Performance of PERCI TAM 450k and PERCI AI 450k in the discovery and validation cohorts. (a) 
Heatmap of methylation z-scores of age and selected CpG sites to build PERCI TAM 450k (left panel) and PERCI 
AI 450k (right panel). (b) Analysis of the performance of PERCI 450ks in the discovery and validation cohorts by 
area under the receiver operating characteristic curve (AUC). The x-axis shows specificity and the y-axis shows 
sensitivity. AUC with 95% confidence intervals. 
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Supplementary Table S1a. Clinico-pathologic characteristics of the discovery cohort 

 All TAM AI   

 
 

Responderc  
Non- 
Responderb  

Respondera  Non- 
Responderb  

  

 n=364 n=107 n=107 n=75 n=75 PTAM PAI 

 n (%) n (%) n (%) n (%) n (%)   

age      0.023 1.6e-05 

 < 50 116 (32%) 49 (46%) 62 (58) 0 5 (7%)   

 50 - 59 133 (36%) 47 (44%) 43 (40%) 9 (12%) 34 (45%)   

 ≥ 60 115 (32%) 11 (10%) 2 (2%) 66 (88%) 36 (48%)   

histology, baseline      1 1 

 NST 324 (89%) 92 (86%) 92 (86%) 70 (93%) 70 (93%)   

 ILBC 40 (11%) 15 (14%) 15 (14%) 5 (7%) 5 (7%)   

pT stage      0.566 1 

 pT1 244 (67%) 71 (66%) 71 (66%) 51 (68%) 51 (68%)   

 pT2 118 (32%) 35 (33%) 35 (33%) 24 (32%) 24 (32%)   

 pT3 2 (1%) 1 (1%) 1 (1%) 0 0   

 pT4 0 0 0 0 0   

pN stage      1 1 

 pN0 342 (94%) 102 (95%) 102 (95%) 69 (92%) 69 (92%)   

 pN1+ 22 (6%) 5 (5%) 5 (5%) 6 (8%) 6 (8%)   

grade, baseline      0.137 NA 

 G1 20 (6%) 7 (7%) 7 (7%) 2 (3%) 2 (3%)   

 G2 198 (54%) 73 (68%) 73 (68%) 27 (36%) 27 (36%)   

 G3 146 (40%) 27 (25%) 27 (25%) 46 (61%) 46 (61%)   

grade, post-pET      1.6e-15 9.6e-13 

 G1 36 (10%) 23 (21%) 0 13 (17%) 0   

 G2 214 (59%) 84 (79%) 46 (46%) 62 (83%) 22 (29%)   

 G3 114 (31%) 0 61 (57%) 0 53 (71%)   

ER, baseline        1 0.134 

 > 10% 358 (98%) 106 (99%) 107 (100%) 74 (99%) 71 (95%)   

 ≤ 10% 4 (1%) 1 (1%) 0 0 3 (4%)   

 n.a. 2 (1%) 0 0 1 (1%) 1 (1%)   

ER, post-pET      1 0.074 

 > 10% 358 (98%) 106 (99%) 107 (100%) 75 (100%) 70 (93%)   

 ≤ 10% 6 (2%) 1 (1%) 0 0 5 (7%)   

PR, baseline      0.302 0.377 

 > 10% 305 (84%) 101 (94%) 96 (90%) 57 (76%) 51 (68%)   

 ≤ 10% 59 (16%) 6 (6%) 11 (10%) 18 (24%) 24 (32%)   

PR, post-pET      1 0.201 

 > 10% 246 (68%) 95 (89%) 95 (89%) 24 (32%) 32 (43%)   

 ≤ 10% 118 (32%) 12 (11%) 12 (11%) 51 (68%) 43 (57%)   

HER2, baseline      1d 0.502d 

 IHC 0/1+ 311 (85%) 92 (86%) 90 (84%) 66 (88%) 63 (84%)   

 IHC 2+, FISH-neg 49 (13%) 14 (13%) 15 (14%) 8 (11%) 12 (16%)   

 IHC 2+, FISH-n.a. 1 (0%) 0 1 (1%) 0 0   

 IHC 2+, FISH-posc 3 (1%) 1 (1%) 1 (1%) 1 (1%) 0   

 IHC 3+c 0 0 0 0 0   

HER2, post-pET      0.551d 0.144d 

 IHC 0/1+ 268 (74%) 83 (78%) 77 (72%) 49 (65%) 59 (79%)   

 IHC 2+, FISH-neg 95 (26%) 24 (22%) 29 (27%) 26 (35%) 16 (21%)   

 IHC 2+, FISH-n.a. 0 0 0 0 0   

 IHC 2+, FISH-posc 0 0 0 0 0   

 IHC 3+c 1 (0%) 0 1 (1%) 0 0   
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E-cadherin, baseline      0.855d 1d 

 pos. 317 (87%) 90 (84%) 90 (84%) 68 (91%) 69 (92%)   

 neg. 44 (12%) 17 (16%) 15 (14%) 6 (8%) 6 (8%)   

 n.a. 3 (1%) 0 2 (2%) 1 (1%) 0   

E-cadherin, post-pET      0.855d 0.724d 

 pos. 314 (86%) 90 (84%) 89 (83%) 67 (89%) 68 (91%)   

 neg. 44 (12%) 17 (16%) 15 (14%) 5 (7%) 7 (9%)   

 n.a. 6 (2%) 0 3 (3%) 3 (4%) 0   

Ki67, baseline      0.495 NA 

 0% - 9% 21 (6%) 10 (9%) 7 (7%) 2 (3%) 2 (3%)   

 10% - 19% 101 (28%)  31 (29%) 42 (39%) 15 (20%) 13 (17%)   

 20% - 34% 205 (56%) 61 (57%) 51 (47%) 44 (58%) 49 (65%)   

 35% - 100% 37 (10%) 5 (5%) 7 (7%) 14 (19%) 11 (15%)   

Ki67, post-pET      3.6e-05 2.2e-05 

 0% - 9% 182 (50%) 107 (100%) 0 75 (100%) 0   

 10% - 19%  0 0 0 0 0   

 20% - 34% 143 (39%) 0 88 (82%) 0 55 (73%)   

 35% - 100% 39 (11%) 0 19 (18%) 0 20 (27%)   

Luminal Subtypee, baseline     0.2 1 

    LumA 268 (74%) 96 (90%) 87 (81%) 42 (57%) 42 (56%)   

    LumB 96 (26%) 11 (10%) 20 (19%) 32 (43%) 33 (44%)   

Oncotype DX RS Group, baseline    0.3 NA 

 1 (0 -11) 78 (21%) 30 (28%) 30 (28%) 9 (12%) 9 (12%)   

 2 (12 – 25) 208 (57%) 68 (64%) 68 (64%) 36 (48%) 36 (48%)   

 3 (26 – 100) 78 (21%) 9 (8%) 9 (8%) 30 (40%) 30 (40%)   
Unless otherwise stated, the values are given in the format n (%), with n corresponding to the number of patients. The 
McNemar's chi-squared test for symmetry were used for statistical analysis between the matched pairs of Responder and 
Non-Responder. Significant differences are highlighted in bold. “NA” for the exact matched pairs therefore the p value is 
not available. 
n.a. not available, ER estrogen receptor, PR progesterone receptor, pET preoperative endocrine therapy, RS recurrence 
score, TAM tamoxifen, AI aromatase inhibitors. 
Case selection of the discovery cohort was done in a way that responders and non-responders were balanced for pT, pN, 
grade (baseline), histological type (baseline and post-pET), and RS group (“matching” to exclude confounding effects by 
dissimilar histological grades in R and NR). 
a: Responder was defined as post-pET Ki67 < 10% and relative Ki67 decrease of ≥ 70% from baseline to post-pET. 
b: Non-reponder was defined as post-pET Ki67 of ≥ 20% and relative Ki67 decrease of ≥ 20% from baseline to post-pET. 
c: HER2-positivity in a minor subclone of <10% of tumor cells; not HER2-positive according to ASCO/CAP-Guidelines [76]. 
d: Comparison only between the first two category groups. 
e: Luminal A: Ki67 baseline < 35% and PR baseline > 20%, Luminal B: Ki67 baseline ≥ 35% and PR baseline ≤ 20% 
 
 
 
 
  

https://paperpile.com/c/1OvF9r/zfYyl
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Supplementary Table S1b. Clinico-pathologic characteristics of the validation cohort 

 All TAM AI   

 
 

Respondera  
Non- 
Responderb  

Respondera  Non- 
Responderb  

  

 n=270 n=75 n=80 n=67 n=48 PTAM PAI 

 n (%) n (%) n (%) n (%) n (%)   

age         2.4e-03 0.692 

 < 50 97 (36%) 35 (47%) 59 (74%) 2 (3%) 1 (2%)   

 50 – 59 83 (31%) 34 (45%) 18 (22%) 16 (24%) 15 (31%)   

 ≥ 60 90 (33%) 6 (8%) 3 (4%) 49 (73%) 32 (67%)   

histology, baseline      3.0e-07 0.666 

 NST 222 (82%) 48 (64%) 77 (96%) 57 (85%) 40 (85%)   

 ILBC 41 (15%) 22 (29%) 2 (3%) 10 (15%) 7 (15%)   

     Othersc 7 (3%) 5 (7%) 1 (1%) 0 1 (2%)   

pT stage      0.017 0.816 

 pT1 145 (54%) 43 (57%) 39 (49%) 38 (57%) 25 (52%)   

 pT2 113 (42%) 27 (36%) 40 (50%) 26 (39%) 20 (42%)   

 pT3 8 (3%) 5 (7%) 0 2 (3%) 1 (2%)   

 pT4 4 (1%) 0 1 (1%) 1 (1%) 2 (4%)   

pN stage      0.390 0.206 

 pN0 226 (84%) 60 (80%) 69 (86%) 59 (88%) 38 (79%)   

 pN1+ 44 (16%) 15 (20%) 11 (14%) 8 (12%) 10 (21%)   

grade, baseline      7.5e-04 1.7e-03 

 G1 22 (8%) 14 (19%) 4 (5%) 3 (4%) 0   

 G2 143 (53%) 51 (68%) 48 (60%) 33 (49%) 11 (23%)   

 G3 106 (39%) 10 (13%) 28 (35%) 31 (47%) 37 (77%)   

grade, post-pET      5.2e-23 3.2e-17 

 G1 33 (12%) 16 (21%) 0 17 (25%) 0   

 G2 146 (54%) 58 (77%) 24 (30%) 49 (73%) 15 (31%)   

 G3 91 (34%) 1 (1%) 56 (70%) 1 (2%) 33 (69%)   

ER, baseline      0.497 1 

 > 10 266 (99%) 75 (100%) 78 (98%) 66 (99%) 47 (98%)   

 ≤ 10 4 (1%) 0 2 (2%) 1 (1%) 1 (2%)   

ER, post-pET      0.611 1 

 > 10 266 (99%) 73 (97%) 79 (99%) 66 (99%) 48 (100%)   

 ≤ 10 4 (1%) 2 (3%) 1 (1%) 1 (1%) 0   

PR, baseline      0.133 0.012 

 > 10 227 (84%) 72 (96%) 71 (89%) 55 (82%) 29 (60%)   

 ≤ 10 43 (12%) 3 (4%) 9 (11%) 12 (18%) 19 (40%)   

PR, post-pET        

 > 10 167 (62%) 67 (89%) 69 (86%) 23 (34%) 8 (17%) 0.629 0.054 

 ≤ 10 103 (38%) 8 (11%) 11 (14%) 44 (66%) 40 (83%)   

HER2, baseline        

 IHC 0/1+ 242 (90%) 68 (91%) 72 (90%) 59 (88%) 43 (90%) 1 e 1 e 

 IHC 2+, FISH-neg 28 (10%) 7 (9%) 8 (10%) 8 (12%) 5 (10%)   

 IHC 2+, FISH-n.a. 0 0 0 0 0   

 IHC 2+, FISH-posd 0 0 0 0 0   

 IHC 3+d 0 0 0 0 0   

HER2, post-pET      0.573 e 0.371 e 

 IHC 0/1+ 208 (77%) 56 (75%) 63 (79%) 54 (81%) 35 (73%)   

 IHC 2+, FISH-neg 62 (23%) 19 (25%) 17 (21%) 13 (19%) 13 (27%)   

 IHC 2+, FISH-n.a. 0 0 0 0 0   

 IHC 2+, FISH-posd 0 0 0 0 0   

 IHC 3+d 0 0 0 0 0   

E-cadherin, baseline      1.2e-05e 0.761 e 
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 pos. 218 (81%) 50 (67%) 73 (94%) 55 (82%) 38 (79%)   

 neg. 44 (16%) 22 (29%) 6 (4%) 11 (16%) 8 (17%)   

 n.a. 8 (3%) 3 (4%) 1 (2%) 1 (2%) 2 (4%)   

E-cadherin, post-pET      1.7e-04 e 0.516 e 

 pos. 218 (81%) 50 (67%) 73 (91%) 53 (79%) 42 (88%)   

 neg. 49 (18%) 24 (32%) 6 (8%) 13 (19%) 6 (12%)   

 n.a. 3 (1%) 1 (1%) 1 (1%) 1 (2%) 0   

Ki67, baseline       1.2e-07 2.1e-05 

 0-9 22 (8%) 12 (16%) 0 10 (15%) 0   

 10-19 103 (38%) 52 (69%) 36 (45%) 13 (19%) 2 (4%)   

 20-34 83 (31%) 10 (13%) 35 (44%) 25 (37%) 12 (25%)   

 35-100 63 (23%) 1 (1%) 9 (11%) 19 (28%) 34 (71%)   

Ki67, post-pET      NA NA 

 0-9 142 (53%) 75 (100%) 0 67 (100%) 0   

 10-19 0 0 0 0 0   

 20-34 87 (32%) 0 46 (58%) 0 41 (85%)   

 35-100 41 (15%) 0 34 (42%) 0 7 (15%)    

Luminal Subtypef, baseline      6.2e-03 2.1e-06 

    LumA 175 (65%) 70 (93%) 62 (78%) 37 (55%) 6 (13%)   

    LumB 95 (35%) 5 (7%) 18 (22%) 30 (44%) 42 (87%)   

Oncotype DX RS Group, baseline    1.9e-08 2.1e-12 

 1 (0 -11) 57 (21%) 31 (41%) 5 (6%) 20 (30%) 1 (2%)   

 2 (12 – 25) 156 (58%) 41 (55%) 56 (70%) 43 (64%) 16 (33%)   

 3 (26 – 100) 57 (21%) 3 (4%) 19 (24%) 4 (6%) 31 (65%)   
Unless otherwise stated, the values are given in the format n (%), with n corresponding to the number of patients. For the 
statistical analysis between the Responder and Non-Responder groups, Fisher's exact test was used. Significant differences 
are highlighted in bold. “NA” indicates data with clear separation therefore the p value is not available. 
n.a. not available, ER estrogen receptor, PR progesterone receptor, pET preoperative endocrine therapy, RS recurrence 
score, TAM tamoxifen, AI aromatase inhibitors. 
Case selection criteria in the validation cohort were made less strict and no matching between NR and R. 
a: Responder was defined as post-pET Ki67 <10%. 
b: Non-reponder was defined as post-pET Ki67 of ≥ 20%. 
c: Others: Tubulary, Medullary, Mucinous. 
d: HER2-positivity in a subclone <10% of tumor cells. not HER2-positive according to ASCO/CAP-Guidelines [76] 
e: Comparison only between the first two category groups. 
f: Luminal A: Ki67 baseline < 35% and PR baseline > 20%, Luminal B: Ki67 baseline ≥ 35% and PR baseline ≤ 20% 
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Supplementary Table S2. Clinico-pathologic features of the TCGA-BRCA sub-cohort 

 All TAM-like AI-like   

 

 PERCI  
TAM 450k  
low 

PERCI  
TAM 450k  
high 

PERCI  
AI 450k  
low 

PERCI  
AI 450k  
high   

 n=269 n=26 n=49 n=143 n=51 PTAM like PAI like 

 n (%) n (%) n (%) n (%) n (%)   

Age      0.22 1.9e-03 

 < 50 73 (26%) 19 (73%) 42 (86%) 6 (4%) 6 (12%)   

 50 - 59 78 (30%) 7 (27%) 7 (14%) 40 (28%) 24 (47%)   

 ≥ 60 118 (44%) 0 0 97 (68%) 21 (41%)   

Menopause      1 1 

 Pre 75 (28%) 26 (100%) 49 (100%) 0 0   

 Post 194 (72%) 0 0 143 (100%) 51 (100%)   

Histology      0.032 0.287 

 NST 190 (71%) 15 (58%) 40 (82%) 96 (67%) 39 (76%)   

 ILBC 79 (29%) 11 (42%) 9 (18%) 47 (33%) 12 (24%)   

pT Stage      0.458 0.026 

 pT1 77 (29%) 3 (12%) 10 (21%) 55 (38%) 9 (18%)   

 pT2 156 (58%) 17 (65%) 32 (65%) 72 (50%) 35 (68%)   

 pT3 35 (13%) 6 (23%) 7 (24%) 15 (11%) 7 (14%)   

 pT4 1 (0%) 0 0 1 (1%) 0   

pN Stage      1 1 

 pN0 126 (47%)  12 (46%) 17 (35%) 71 (50%) 26 (51%)   

 pN1+ 143 (53%) 14 (54%) 32 (65%) 72 (50%) 25 (49%)   

Grade      0.314 0.026 

 G1 74 (27%) 8 (31%) 10 (21%) 49 (34%) 7 (14%)   

 G2 123 (46%) 15 (58%) 24 (49%) 59 (41%) 25 (49%)   

 G3 57 (21%) 3 (11%) 13 (26%) 27 (19%) 14 (28%)   

 NA 15 (6%) 0  2 (4%) 8 (6%) 5 (10%)   

ER       1 1 

 Positive 269 (100%) 26 (100%) 49 (100%) 143 (100%) 51 (100%)   

 Negative 0 0 0 0 0   

PR      1 0.528 

 Positive 228 (85%) 22 (85%) 42 (86%) 123 (86%) 41 (80%)   

 Negative 40 (15%) 4 (15%) 7 (14%) 19 (13%) 10 (20%)   

 Indeterminate 1 (0%) 0 0 1 (1%) 0   

HER2      0.421b 0.107 b 

 Negative 193 (72%) 17 (65%) 37 (76%) 107 (75%) 32 (63%)   

 Equivocala 76 (28%) 9 (35%) 12 (24%) 36 (25%) 19 (37%)   

 Positive 0 0 0 0 0   

Progression-free survival (PFS) statusc    0.012 0.084 

 0 247 (92%) 26 (100%) 39 (80%) 137 (96%) 45 (88%)   

 1 22 (8%) 0  10 (20%) 6 (4%) 6 (12%)   
Unless otherwise stated, the values are given in the format n (%), with n corresponding to the number of patients. For 
statistical analysis between the PERCI TAM/AI low and PERCI TAM/AI high, Fisher’s exact test (FET) was used. Significant 
differences are highlighted in bold.  
ER estrogen receptor, PR progesterone receptor, PFS progression-free survival. 
a: Her2 equivocal was defined in TCGA either with scores of 2+ in the immunohistochemistry (IHC) assay or with a 
HER2/CEP17 ratio between 1.8 and 2.2 in Fluorescence in situ hybridization (FISH).  
b: Comparison only between the first two category groups. 
c: 0 censored, 1 progression 
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