
Deep Learning in CT

Marc Kachelrieß

German Cancer Research Center (DKFZ)

Heidelberg, Germany

www.dkfz.de/ct



3

Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Convolutional Neural Network (CNN)
• Replace dense W in                                    by a sparse 

matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 

Here, a 2D example is shown. Conv layers also exist in 3D and higher dimensions.
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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Activation Functions

Function Equation Plot

Identity

Sigmoid

Hard

sigmoid

Tanh

Softsign

Softplus

Function Equation Plot

ReLU

Leaky

ReLU

ELU

Inverse 

square root

LU

… … …
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Loss Function

• The neural network parameters (weights and biases) 
w are chosen by minimizing a loss function (cost 
function)

with xn being the training data input, y(xn, w) being 
the network output, and yn being the so-called labels, 
i.e. the training target, and N being the number of 
training samples.

• An example for such a loss function is the MSE loss
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Gradient Descent

• Walk along the direction of the negative gradient

• Steepest descent

• Learning rate 

• Easy to understand, but not optimal

• Methods in use
– Batch gradient descent

– Sochastic gradient descent

– Mini-batch gradient descent

– Conjugate gradient descent

– Quasi Newton methods

– Momentum methods

– …
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What is an Autoencoder?

• In and output domain are the same, here x.

• Bottleneck z enforces the encoder and decoder to do a 
good job.

• Examples:
– Principal component analysis (linear autoencoder), lossless

– PCA with dimensionality reduction (nonlinear due to clipping), lossy

– Image compression and decoding, e.g. jpeg, lossy

• Latent space typically not interpretable.

E D
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• Make latent space regular.

• Allow to sample in latent space from a given 
distribution, here: normal distribution.

• The VAE is a generative model. 

• It allows to generate new data by sampling new values 
from the normal distribution.

What is a Variational Autoencoder?

E D
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Generative Adversarial Network1

(GAN)
• Useful, if no direct ground truth (GT) is available, the 

training data are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1I. Goodfellow et al. Generative Adversarial Nets, arXiv 2014
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Generative Adversarial Network 
(GAN)

• Typical loss function and minimax game:

• Conditional GAN1

– Conditional GANs sample the generator input x not from a uniform 
distribution but  from a conditional distribution, e.g. noisy CT images.

– Need some measure to ensure similarity to input distribution (e.g. 
pixelwise loss added to the minimax loss function) 

• Cycle GAN2

– Two GANs (X  Y and Y  X)

– Demand cyclic consistency, i.e.
x = GX(GY(x)) and y = GY(GX(x))

1Isola et al. 2017
2Zhu et al., 2017

X Y

GY

GX

DYDX



40

Fitting
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Fitting
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Fitting
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Fitting

underfit reasonable overfit
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• Training and validation set are part of the training

• Do not use test set for training

• Early stopping (at minimum validation loss)

• Training : Validation : Test     70 : 20 : 10

Learning Curve

Test Set

epochs

loss

Training Set

epochs

loss

Validation Set

epochs

loss

Stop here!
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Part 1:

Making up Data
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Limited Angle Example

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. 
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.

GT FBP (150°) CNN
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Deep MAR Examples
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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MAR without Machine Learning is a 
Good Alternative:

Frequency Split Normalized MAR1,2

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

Uncorrected FSLIMAR FSNMAR

1E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.   
2E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.
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Summary on Deep MAR

• Most common uses for networks:
– Improve image quality in image domain after MAR

– Use network for the sinogram inpainting

– Produce a prior image, e.g. for NMAR

• Additional observations:
– Training data are often produced by segmenting an artifact-free CT  

image, adding metal and applying a polychromatic forward projection to 
different types of tissue separately.

– As of today, it seems hard to outperform NMAR, or hard to give 
convincing clinical examples.
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Junyoung Park, Donghwi Hwang, Kyeong Yun Kim, Seung Kwan Kang, Yu Kyeong Kim and Jae Sung Lee. Computed 
tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63: 145011, 2018

Resolution Improvement Example
• 2D U-net to converts 5 mm thick images into 1 mm ones.

• E.g. to “replace a scanning protocol for a 1 mm slice with 
a 5 mm protocol”. 5 mm image 1 mm GTRL deconv. U-net
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Canon’s PIQE
• PIQE (precise IQ engine) is trained to convert low 

resolution images into high resolution images

• Training data are taken from Canon’s Precision CT that 
has small detector pixels (0.25 mm at iso). 

• Claims:
– Improved 

visualization of
plaque

– Reduction in
blooming 
artifacts

AIDR3D PIQE

Image taken from at.medical.canon
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Part 2:

Noise Reduction
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Noise Removal Example 2
• Task: Reduce noise from low dose CT images.

• A conditional generative adversarial networks (GAN) is used

• Generator G: 

– 3D CNN that operates on small cardiac CT sub volumes

– Seven 3×3×3 convolutional layers yielding a receptive field of 15×15×15 
voxels for each destination voxel

– Depths (features) from 32 to 128

– Batch norm only in the hidden layers

– Subtracting skip connection

• Discriminator D:

– Sees either routine dose image or a 
generator-denoised low dose image 

– Two 3×3×3 layers followed by several
3×3 layers with varying strides

– Feedback from D prevents smoothing.

• Training:
– Unenhanced (why?) patient data acquired 

with Philips Briliance iCT 256 at 120 kV.

– Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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• G1 and G2 include supervised learning and thus 
perform only with phantom measurements.

• G3 is unsupervised. 

• G3 is said to generate images with a more similar 
appearance to the routine-dose CT. Feedback from 
the discriminator D prevents smoothing the image.

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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iDose level 3 reconstruction (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Denoised low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Normal dose image (0.9 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Noise Removal Example 3

• Architecture based on state-of-the-art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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• Advanced intelligent Clear-IQ Engine (AiCE)

• Trained to restore low-dose CT data to match the 
properties of FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a 
high fidelity training target

Noise Removal: Canon‘s AiCE

K. Boedeker. AiCE Deep Learning Reconstruction: Bringing the Power of Ultra High Resolution CT 
to Routine Imaging. Whitepaper, Canon, 2019.



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGycm
Deff = 0.35 mSv
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Noise Reduction: GE‘s True Fidelity

• Based on a deep CNN

• Trained to restore low-dose CT data to match the 
properties of high quality FBP datasets.

• Said to preserve noise texture and NPS 



FBP ASIR V 50% True Fidelity

Courtesy of GE Healthcare
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Solomon et al. Noise and spatial resolution properties of a commercially available deep 
learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020
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Noise Removal: Philips’ Precise Image

• Noise-injected data serve as low dose examples 
while their original reconstructions are the labels. A 
CNN learns how to denoise the low dose images.

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf
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Study Topic Dose Reduction Assessment Reconstruction

Beregi et al., 2022
low-dose abdomen 

phantom
79% objective AiCE

Hirai et al., 2022a
low-dose multiphase 

hepatic
52% objective, subjective AiCE

Hirai et al., 2022b low-dose pediatric 80 kV 54% objective, subjective AiCE

Jin et al., 2022
low-dose interstitial lung 

disease
62% objective, subjective AiCE

Loffroy et al., 2022 low-dose head & neck 43% objective, subjective AiCE

Sun et al., 2022 ultra-low-dose urolithiasis 75% objective, subjective AiCE

Yoshioka et al., 2022
low-dose contrast 

abdomen
40% objective, subjective AiCE

Awai et al., 2021 low-dose abdominal UHR 30% objective, subjective AiCE

Dillman et al., 2021 pediatric detectability 52% objective, subjective AiCE

Loffroy et al., 2021 cardiac CTA stroke 40% objective, subjective AiCE

Kalra et al., 2020 low-dose lesion detection 83% subjective AiCE

Willemink et al., 2023 principles & prospects 71% mixed meta

Strigari et al., 2023 image quality phantom 96% objective Precise Image

Deng et al., 2022 
ultra-low-dose pulmonary 

nodules phantom
72% objective, subjective TrueFidelity

Lee et al., 2021 
pediatric chest & 

abdomen
63% objective, subjective TrueFidelity
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True and Fake DECT
Existing true DECT approaches (for more than one decade):

Existing fake DECT approaches (as of May 2022):

[1] J. Ma, Y. Liao, Y. Wang, S. Li, J. He, D. Zeng, Z. Bian, “Pseudo dual energy CT imaging using deep learning-based 
framework: basic material estimation“, SPIE Medical Imaging 2018.

[2] W. Zhao, T. Lv, P. Gao, L. Shen, X. Dai, K. Cheng, M. Jia, Y. Chen, L. Xing, “A deep learning approach for dual-energy 
CT imaging using a single-energy CT data”, Fully3D 2019.

[3] D. Lee, H. Kim, B. Choi, H. J. Kim, “Development of a deep neural network for generating synthetic dual-energy chest x-
ray images with single x-ray exposure”, PMB 64(11), 2019.

[4] L. Yao, S. Li, D. Li, M. Zhu, Q. Gao, S. Zhang, Z. Bian, J. Huang, D. Zeng, J. Ma, “Leveraging deep generative model for 
direct energy-resolving CT imaging via existing energy-integrating CT images”, SPIE Medical Imaging 2020.

[5] D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, C. T. Badea, “Deep learning based spectral extrapolation for 
dual-source, dual-energy x-ray CT”, Med. Phys. 47 (9): 4150–4163, 2020.

[6] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, “Generation of brain dual-energy CT from single-energy CT using deep 
learning”, Journal of Digital Imaging 34(1):149–161, 2021.

[7] T. Lyu, W. Zhao, Y. Zhu, Z. Wu, Y. Zhang, Y. Chen, L. Luo, S. Li, L. Xing, “Estimating dual-energy CT imaging from 
single-energy CT data with material decomposition convolutional neural network”, Medical Image Analysis 70:1–10, 2021.

[8] F. R. Schwartz, D. P. Clark, Y. Ding, J. C. Ramirez-Giraldo, C. T. Badea, D. Marin, “Evaluating renal lesions using deep-
learning based extension of dual-energy FoV in dual-source CT—A retrospective pilot study”, European Journal of 
Radiology 139:109734, 2021.

[9] Y. Li, X. Tie, K. Li, J. W. Garrett, G.-H. Chen, “Deep-En-Chroma: mining the spectral fingerprints in single-kV CT
acquisitions using energy integration detectors”, SPIE Medical Imaging 2022.
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Real DECT
(ground truth)

70 kV

150 kV Sn

measured

measured

measured

calculated

Fake DECT
(often proposed)

measured

partially measured

calculated

final 150 kV Sn

measured

No physical 
information is 

available at 
150 kV.

Partial DECT
(small B FOM)
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Algorithm for Partial DECT
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Part 3: 

Replacement of Lengthy Computations
Fast Physics
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Deep Scatter Estimation

???

In real time?
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Deep Scatter Estimation (DSE)
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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 6000 projections using 

different heads and acquisition parameters 

(80 kV, …, 140 kV in steps of 20 kV).

• Splitting into 80% training and 20% 

validation data.

• Mean S/P = 0.9

• 90th percentile S/P = 1.32

• Training minimizes MSE pixel-wise loss on 

a GeForce GTX 1080  for 80 epochs.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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PEP

A
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PEP

B
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PEP

C
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PEP

C

A

B
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PEP for CT

C

A

B

I0
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage

error
over
all

projections

7.2%
mean 

absolute
percentage

error
over
all

projections

6.4%
mean 

absolute
percentage

error
over
all

projections

DSE trained to estimate scatter from primary only: Low accuracy
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationGround Truth
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan

D
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C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Truncated DSE

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Does DSE Generalize
to Different Anatomical Regions? 

• Simulation parameters:
– 7 head and 14 thorax/abdomen clinical CT data sets

– Apply affine transforms to obtain 28 volumes for each region

– Regions: head, thorax and abdomen

– Tube Voltage: 120 kV, 140 kV.

– Prior volumes: 28 head phantoms

– Simulate 45 projections over 360° for each volume and voltage

– Number of z-Positions: 1 for head, 4 for thorax and abdomen

– Data augmentation for head: vertical & horizontal flipping

– Total number of projections: 2 × 28 × 45 × 2 × 2 = 10080

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.

DSE Head Thorax Abdomen

Head 1.2 21.1 32.7

Thorax 8.8 1.5 9.1

Abdomen 11.9 10.9 1.3

All data 1.8 1.4 1.4

KSE Head Thorax Abdomen

Head 14.5 26.8 32.5

Thorax 16.2 18.5 19.4

Abdomen 16.8 22.1 17.8

All data 14.9 20.5 19.3

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.

Siemens SOMATOM Force 
dual source cone-beam spiral CT

Scatter in Dual Source CT (DSCT)

Ground Truth Forward Scatter Cross-Scatter Forward 
+ Cross-Scatter

C = 40 HU, W = 300 HU, with 2D anti-scatter grid
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z

primary intensity profile

imaging detector rows
scatter 
detector

row

scatter 
detector

row

finite size focal spot

pre patient collimation

Measurement-Based 
Scatter Estimation

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Cross-DSE

Uncorrected xDSE (2D, xSSE)

MAE = 10.6 HUMAE = 4.9 HUMAE = 42.6 HU

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU 

Ground Truth

xDSE (2D, xSSE) maps 
primary + forward scatter + cross-scatter + cross-scatter approximation    cross-scatter

Measurement-based

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Conclusions on DSE
• DSE needs about 3 ms per CT and 10 ms per CBCT 

projection (as of 2020).

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms kernel-based approaches in terms of 
accuracy and speed.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE generalizes to all anatomical regions.

– DSE works for geometries and beam qualities differing from training.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Scatter Artifacts of Coarse ASG

Coarse ASG

Reconstruction: C = 40 HU, W = 300 HU

Coarse ASG can lead to scatter-induced moiré artifacts.

Conventional ASG
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1234

Coarse ASG
Naeotom Alpha

1376 × 144 macro pixels
pixel size 0.3 × 0.352 mm at iso

Scatter of Coarse ASG

z



Conventional ASG
Somatom Force

920 × 96 detector pixels
pixel size 0.52 × 0.56 mm at iso

1234

1234 1234

1234 1234

EI

EI
ASG

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th 
International Conference on Image Formation in X-Ray Computed Tomography in June 2022

Primary 
photon

Scattered 
photons

Coarse ASGs lead to 
changing scatter 
intensity between 

neighboring pixels. 
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3

Scatter distribution averaged over all detector rows 


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Scatter distribution averaged over all detector rows 

3



right

left
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Training and Validation Data
• Monte Carlo simulation with the geometry of the photon counting CT 

scanner NAEOTOM Alpha (Siemens Healthineers)

• 12 patients for training and 4 for validation

• 14 z-positions with 36 projections each simulated for each patient

• 8064 paired scatter and primary data pairs

• Simulation of coarse ASG with macro pixel with detector dimension of 
1376 × 144 pixels

• 6 different macro pixels locations

• Smooth only across same macro-pixel locations

14 z positions
z1

z14

…

70 cm

Training and validation patients with high 
variety and different clinical situations, 
important to consider scatter-to-primary ratio

Example of validation data set:

M(0,0)

M(0,1)

M(1,0)

M(1,1)

M(0,2) M(1,2)
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688×48×32

344×24×64

172×12×128

86×6×256 

43×3×512

Detector dimension 
1376×144
Input mapping

Input: 6 channels

Merging 6 different channels to 
obtain total scatter correction term

Output: 6 channelsDifferent macro pixel locations

(0,0)

(0,1) 

(1,0)

(1,1)

(0,2)

(1,2)

Each channel 
corresponds to a 
different pixel position 
between the lamallea of 
the ASG

DSE for coarse ASG

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

Unpooling + depth concat.

Skip connection

Reshape

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th 
International Conference on Image Formation in X-Ray Computed Tomography in June 2022
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MAE = 8.0 HU MAE = 0.6 HU

Uncorrected DSEGround Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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MAE = 8.0 HU MAE = 0.6 HU

Uncorrected DSEGround Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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Conclusions

• Coarse anti-scatter grid can lead to moiré artifacts 
due to scattered radiation.

• DSE reduces the mean absolute error (MAE) from 
about 9 HU to under 1 HU.

• The moiré pattern‘s amplitude can be reduced from 
30 HU to less than 5 HU.
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Deep Dose Estimation

???

In real time?
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Estimation of Dose Distributions

• Useful to study dose reduction techniques
– Tube current modulation

– Prefiltration and shaped filtration

– Tube voltage settings

– …

• Useful to estimate patient dose
– Risk assessment requires segmentation of the organs (difficult)

– Often semiantropomorphic patient models take over

– The infamous k-factors that convert DLP into Deff are derived this 
way, e.g. kchest = 0.014 mSv/mGy/cm

– …

• Could be useful for patient-specific CT scan protocol 
optimization

• However: Dose estimation does not work in real time!

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Motivation

• The potential risk of ionizing radiation makes dose 
assessment an important issue in CT imaging.

• Limitation of common metrics (e.g. CTDIw, CTDIvol, 
DLP, k-factor, SSDE, …) to provide information on 
organ or patient dose.

Same CTDI, but different dose distribution

Small patient Medium patient Large patientCTDI phantom

Dose values in air voxels are set to zero (black) in this presentation.
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MC Dose Simulation for a 360° Scan

Dose per Projection Cumulative DosePatient

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Influence of Bowtie Filter

• Commercial CT-scanners are usually equipped with a bowtie 
filter in order to optimize the patient dose distribution.

• Monte-Carlo dose calculations or statistical reconstruction 
algorithms require exact knowledge of the bowtie filter.

• The shape as well as the composition of the bowtie filter is 
usually not disclosed by the CT vendors.

0

1

a
rb

it
ra

ry
 u

n
it

s

Source

Detector

Bowtie Filter

Patient dose 
distribution of a 

circular scan 
without bowtie filter

Patient dose 
distribution of a 

circular scan with 
bowtie filter

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Patient-Specific Dose Estimation

• Accurate solutions: 
– Monte Carlo (MC) simulation1, gold standard, stochastic LBTE solver

– Analytic linear Boltzmann transport equation (LBTE) solver2

 Accurate but computationally expensive

• Fast alternatives:
– Application of patient-specific conversion factors to the DLP3.

– Application of look-up tables using MC simulations of phantoms4.

– Analytic approximation of CT dose deposition5.

 Fast but less accurate

1G. Jarry et al., “A Monte Carlo-based method to estimate radiation dose from spiral CT”, Phys. Med. Biol. 48, 2003.
2A. Wang et al., “A fast, linear Boltzmann transport equation solver for computed tomography dose calculation 

(Acuros CTD)”. Med. Phys. 46(2), 2019.
3B. Moore et al., “Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric 

CT examinations”, Med. Phys. 41, 2014.
4A. Ding et al., “VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients”, Phys. 

Med. Biol. 60, 2015.
5B. De Man, “Dose reconstruction for real-time patient-specific dose estimation in CT”, Med. Phys. 42, 2015.
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Deep Dose Estimation (DDE)
• Train a UNet to predict patient dose given a CT image and a photo 

effect dose image

• Training data

– 15 CT patient data sets segmented into air, fat, soft tissue, and bone

– Simulate projection data by forward projection (120 kV, 720 projections, circle 
scans at 20 different z-positions to equally cover pelvis, abdomen, thorax and 
head).

– Simulate scans without bowtie, with botwie, with bowtie and TCM 

– In total 15×20×3 = 900 data sets are reconstructed

– Use Monte Carlo software RayConStruct-MC to calculate the patient dose 
distribution, thereby accounting for Rayleigh, Compton and photo effect.

– Calculate photo effect dose distribution by direct backprojection and energy 
deposition in each voxel

• Training

– U-Net sees the CT volumes and the corresponding
first order (photoeffect) dose volumes and is
trained to predict the patient dose distribution.

– Since bone is underrepresented in all of the data 
sets, bone voxels received a twenty-fold weight in 
our MSE-based pixel-wise loss function

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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• Combine fast and accurate CT dose estimation using 
a deep convolutional neural network.

• Train the network to reproduce MC dose estimates 
given the CT image and a first-order dose estimate.

Deep Dose Estimation (DDE)

256 × 256 x 48 × 16

16 × 16 × 3 × 256

3 × 3 × 3 Convolution (stride = 1), ReLU 3 × 3 × 3 Convolution (stride = 2), ReLU 2 × 2 × 2 Upsampling1 × 1 × 1 Convolution (stride = 1), ReLU

Depth concatenate

128 × 128 x 24 × 32

64 × 64 x 12 × 64

32 × 32 x 6 × 128

2-channel input:

CT image

MC-dose1

target:

1st order dose

1M. Baer, M. Kachelrieß. 
Phys. Med. Biol. 57, 2012. 

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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First-Order Dose Estimate 

• DDE network needs information about the tube 
current, the tube voltage, shaped filters etc., which is 
encoded in the first-order dose estimate.

• First order dose-estimate in a voxel with volume V 
and mass m at position r :

Emission characteristic 
of the x-ray source 

(including shaped filters)

Interaction probability for 
photo effect (i = PE) and 
Compton scattering (i = 

CS)

Energy deposition by 
photo effect (i = PE) and 
Compton scattering (i = 

CS)

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Training and Validation
• Simulation of 1440 circular dual-source

CT scans (64×0.6 mm, FOMA = 50 cm, 
FOMB = 32 cm) of thorax, abdomen, 
and pelvis using 12 different patients.

• Simulation with and without bowtie.

• No data augmentation

• Reconstruction on a 512×512×96 grid
with 1 mm voxel size, followed by 2×2×2
binning for dose estimation.

• 9 patients were used for training and 3 for testing.

• DDE was trained for 300 epochs on an Nvidia Quadro 
P6000 GPU using a mean absolute error pixel-wise 
loss, the Adam optimizer, and a batch size of 4.

• The same weights and biases were used for all cases.

Tube A

Tube B

1440 = 12 patients × 20 z-positions × 6 modes (A, A+bowtie, A+bowtie+TCM, B, B+Bowtie, B+bowtie+TCM) 
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Results
Thorax, tube A, 120 kV, with bowtie

MC DDE

48

slices
1 h 0.25 s

whole 

body
20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Results
Thorax, tube A, 120 kV, no bowtie

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC DDE

48

slices
1 h 0.25 s

whole 

body
20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Conclusions on DDE

• DDE provides accurate dose predictions 
– for circle scans

– for sequence scans

– for partial scans (less than 360°)

– for limited angle scans (less than 180°)

– for spiral scans

– for different tube voltages 

– for scans with and without bowtie filtration

– for scans with tube current modulation

• In practice it may therefore be not necessary to 
perform separate training runs for these cases.

• Thus, accurate real-time patient dose estimation may 
become feasible with DDE.

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Part 5: 

Other Applications
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Patient Risk-Minimizing
Tube Current Modulation

1. Coarse reconstruction from two scout views
– E.g. X. Ying, et al. X2CT-GAN: Reconstructing CT from biplanar x-

rays with generative adversarial networks.
CVPR 2019.

2. Segmentation of radiation-sensitive organs
– E.g. S. Chen, M. Kachelrieß et al., Automatic multi‐organ 

segmentation in dual‐energy CT (DECT) with dedicated 3D fully 
convolutional DECT networks. Med. Phys. 2019.

3. Calculation of the effective dose per view 
using the deep dose estimation (DDE)
– J. Maier, E. Eulig, S. Dorn, S. Sawall and M. Kachelrieß. Real-time 

patient-specific CT dose estimation using a deep convolutional neural 
network. IEEE Medical Imaging Conference Record, M-03-178: 3 
pages, Nov. 2018.

4. Determination of the tube current modulation 
curve that minimizes the radiation risk
– L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. 

Maier, M. Lell, J. Maier, and M. Kachelrieß. Patient-specific radiation 
risk-based tube current modulation for diagnostic CT. Med. Phys. 
49(7):4391-4403, July 2022.

View angle

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
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riskTCM avg/mix

riskTCM opt
58% reduction of Deff

mAsTCM          ..
12% reduction of Deff

tube
current

source
position

Anterior RightPosteriorLeft

Deep
Segmentation

Deep
Dose Estimation

CT image
Remainder 0.12

Bone surface 0.01

Brain 0.01

Breast 0.12

Colon 0.12

Red Bone Marrow
0.12

Salivary glands 0.01

Esophagus 0.04

Liver 0.04

Lung 0.12

Skin 0.01

Stomach 0.12

Gonads 0.08

Thyroid 0.04

Bladder 0.04

Anterior

LR

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.

This paper received the 
Sylvia&Moses Greenfield Award for 
the best scientific paper on imaging 

in Medical Physics in 2022.
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Patient 03 - Neck
no TCM

riskTCM
mix

riskTCM
opt

mAsTCM riskTCM
avg

53 HU, 100% mAs, 100% Deff
53 HU, 100% mAs, 100% Deff

51 HU, 60% mAs, 51% Deff
38 HU, 116% mAs, 100% Deff

51 HU, 59% mAs, 48% Deff
36 HU, 124% mAs, 100% Deff

50 HU, 59% mAs, 44% Deff
35 HU, 136% mAs, 100% Deff

50 HU, 63% mAs, 42% Deff
33 HU, 148% mAs, 100% Deff

Re 0.12
BS 0.01
Br 0.01
Br 0.12
Co 0.12
RB 0.12
SG 0.01
Es 0.04
Li 0.04

Lu 0.12
Sk 0.01
St 0.12

Go 0.08
Th 0.04
Bl 0.04

C = 25 HU, W = 400 HU
1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.

Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.



189

Patient 03 - Pelvis
no TCM

riskTCM
mix

riskTCM
opt

mAsTCM riskTCM
avg

55 HU, 100% mAs, 100% Deff
55 HU, 100% mAs, 100% Deff

54 HU, 73% mAs, 61% Deff
43 HU, 119% mAs, 100% Deff

54 HU, 73% mAs, 56% Deff
41 HU, 134% mAs, 100% Deff

54 HU, 73% mAs, 45% Deff
37 HU, 162% mAs, 100% Deff

54 HU, 74% mAs, 39% Deff
34 HU, 190% mAs, 100% Deff

Re 0.12
BS 0.01
Br 0.01
Br 0.12
Co 0.12
RB 0.12
SG 0.01
Es 0.04
Li 0.04

Lu 0.12
Sk 0.01
St 0.12

Go 0.08
Th 0.04
Bl 0.04

C = 25 HU, W = 400 HU
1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.

Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Patient 04 - Abdomen
no TCM

riskTCM
opt

mAsTCM riskTCM
avg

52 HU, 100% mAs, 100% Deff
52 HU, 100% mAs, 100% Deff

52 HU, 95% mAs, 89% Deff
49 HU, 107% mAs, 100% Deff

52 HU, 97% mAs, 71% Deff
44 HU, 137% mAs, 100% Deff

51 HU, 100% mAs, 53% Deff
38 HU, 187% mAs, 100% Deff

51 HU, 103% mAs, 43% Deff
34 HU, 238% mAs, 100% Deff

Re 0.12
BS 0.01
Br 0.01
Br 0.12
Co 0.12
RB 0.12
SG 0.01
Es 0.04
Li 0.04

Lu 0.12
Sk 0.01
St 0.12

Go 0.08
Th 0.04
Bl 0.04

riskTCM
mix

C = 25 HU, W = 400 HU
1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.

Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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noTCM mAsTCM riskTCM

Head w Arms:

01 167% 100% 98%

02 156% 100% 85%

03 168% 100% 91%

04 145% 100% 89%

Average (159±11)% 100% (91±6)%

Head w/o Arms:

01 100% 100% 90%

02 121% 100% 88%

03 107% 100% 93%

04 110% 100% 92%

Average (110±9)% 100% (91±2)%

Thorax:

32no 132% 100% 67%

33ko 112% 100% 80%

40mm 116% 100% 81%

42mo 115% 100% 75%

54km 112% 100% 80%

66nm 111% 100% 81%

63mo 115% 100% 76%

Average (116±7)% 100% (77±5)%

Abdomen:

32no 127% 100% 78%

33ko 102% 100% 90%

40mm 108% 100% 84%

42mo 115% 100% 75%

54km 103% 100% 75%

66nm 102% 100% 64%

63mo 110% 100% 69%

Average (109±9)% 100% (77±9)%

Pelvis:

32no 133% 100% 93%

42mo 135% 100% 81%

63mo 139% 100% 89%

Average (136±2)% 100% (88±6)%

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Effective Dose at Same Image Noise 
Relative to mAsTCM

Average over all patients

Tube Voltage noTCM mAsTCM riskTCM

70 kV 110% from 100% to 121% 100% 91% from 80% to 96%

100 kV 110% from 100% to 122% 100% 92% from 83% to 96%

120 kV 111% from 101% to 123% 100% 92% from 84% to 96%

150 kV 110% from 101% to 122% 100% 92% from 86% to 96%

Tube Voltage noTCM mAsTCM riskTCM

70 kV 163% from 145% to 178% 100% 87% from 84% to 91%

100 kV 158% from 139% to 186% 100% 87% from 83% to 91%

120 kV 160% from 142% to 183% 100% 88% from 84% to 94%

150 kV 161% from 144% to 183% 100% 88% from 82% to 95%
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1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Effective Dose at Same Image Noise 
Relative to mAsTCM

Average over all patients

Tube Voltage noTCM mAsTCM riskTCM

70 kV 230% from 175% to 303% 100% 73% from 57% to 78%

100 kV 225% from 178% to 300% 100% 76% from 61% to 80%

120 kV 221% from 179% to 299% 100% 77% from 62% to 81%

150 kV 214% from 175% to 274% 100% 77% from 64% to 82%

Tube Voltage noTCM mAsTCM riskTCM

70 kV 113% from 108% to 118% 100% 77% from 67% to 82%

100 kV 113% from 107% to 117% 100% 81% from 74% to 85%

120 kV 113% from 107% to 118% 100% 82% from 75% to 86%

150 kV 113% from 108% to 118% 100% 83% from 76% to 87%
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1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Effective Dose at Same Image Noise 
Relative to mAsTCM

Average over all patients

Tube Voltage noTCM mAsTCM riskTCM

70 kV 113% from 105% to 135% 100% 69% from 57% to 76%

100 kV 113% from 103% to 137% 100% 71% from 62% to 79%

120 kV 114% from 106% to 135% 100% 72% from 64% to 79%

150 kV 115% from 106% to 136% 100% 73% from 66% to 80%

Tube Voltage noTCM mAsTCM riskTCM

70 kV 153% from 134% to 189% 100% 76% from 65% to 91%

100 kV 152% from 134% to 186% 100% 78% from 68% to 91%

120 kV 151% from 134% to 184% 100% 80% from 72% to 92%

150 kV 151% from 136% to 184% 100% 81% from 72% to 93%
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1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Conclusions on RiskTCM

• Risk-specific TCM minimizes the patient risk.

• With Deff as a risk model riskTCM can reduce risk by 
up to 30%, compared with the gold standard mAsTCM.

• Other risk models, in particular age-, weight- and sex-
specific models, can be used with riskTCM as well.

• Note:
– mAsTCM = good for the x-ray tube

– riskTCM = good for the patient

– detector flux equalizing TCM = good for the detector

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.

This paper received the 
Sylvia&Moses Greenfield Award for 
the best scientific paper on imaging 

in Medical Physics in 2022.
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riskTCM vs. Breast-Specific TCM

• osTCM mimics X-Care (Siemens Healthineers)

• Reduces the tube current to 25% for the anterior 120°

• Higher tube current for the remaining 240°

Lower tube current

Higher tube current

D. Ketelsen et al. Automated computed tomography dosesaving algorithm 
to protect radiosensitive tissues: estimation of radiation exposure and 

image quality considerations. Invest Radiol, 47(2):148–52, 2012

L. Klein, L. Enzmann, A. Byl, C. Liu, S. Sawall, A. Maier, J. Maier, M. Lell, and M. Kachelrieß.
Organ- vs. patient risk-specific TCM in thorax CT scans covering the female breast. CT Meeting 2022.
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Results

osTCM25% (mimics X-Care)

noTCM mAsTCM osTCM0%

riskTCM

50 HU, 100% mAs, 100% Deff

50 HU, 100% mAs, 100% Deff

50 HU, 100% mAs, 100% Dbreast

50 HU, 90% mAs, 86% Deff

47 HU, 104% mAs, 100% Deff

50 HU, 90% mAs, 87% Dbreast

50 HU, 90% mAs, 71% Deff

42 HU, 127% mAs, 100% Deff

50 HU, 90% mAs, 56% Dbreast

50 HU, 90% mAs, 76% Deff

44 HU, 119% mAs, 100% Deff

50 HU, 91% mAs, 65% Dbreast

50 HU, 89% mAs, 62% Deff

39 HU, 145% mAs, 100% Deff

50 HU, 92% mAs, 39% Dbreast

Data courtesy of Prof. Lell, Nürnberg. C = 25 HU, W = 400 HU

L. Klein, L. Enzmann, A. Byl, C. Liu, S. Sawall, A. Maier, J. Maier, M. Lell, and M. Kachelrieß.
Organ- vs. patient risk-specific TCM in thorax CT scans covering the female breast. CT Meeting 2022.
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Dose Values for the Thorax at
Same Image Noise for 70 kV

Average over all patients

TCM Method Effective Dose Deff Dose to the Breast DBreast

noTCM 116% from 111% to 132% 108% from 102% to 125%

mAsTCM 100% 100%

osTCM25% 95% from 91% to 100% 77% from 74% to 90%

osTCM0% 91% from 83% to 98% 70% from 65% to 87%

riskTCM 77% from 67% to 81% 49% from 40% to 66%

L. Klein, L. Enzmann, A. Byl, C. Liu, S. Sawall, A. Maier, J. Maier, M. Lell, and M. Kachelrieß.
Organ- vs. patient risk-specific TCM in thorax CT scans covering the female breast. CT Meeting 2022.
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Conclusions on RiskTCM

• Risk-specific TCM minimizes the patient risk.

• With Deff as a risk model riskTCM can reduce risk by 
up to 50% and more, compared with the gold standard 
mAsTCM.

• Other risk models, in particular age-, weight- and sex-
specific models, can be used with riskTCM as well.

• Note:
– mAsTCM = good for the x-ray tube

– riskTCM = good for the patient

– detector flux equalizing TCM = good for the detector

• Compared with breast-specific TCM the riskTCM 
approach is 25% lower in dose. 

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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Part 6: Registration and MoCo
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4D CBCT MoCo with
Deep Image Registration?

• 4D CBCT refers to respiratory-gated CBCT images

• Due to gating, streak artifacts typically occur

• A motion compensation (MoCo) helps to warp the 
respiratory phases into a target phase. MoCo 
requires to estimate the motion vector fields (MVFs).

• MVF estimation uses deformable registration.
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Examples for CBCT MoCo
sMoCo

Standard Motion 
Compensation

3D CBCT
Standard

4D gated CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

1 min shifted detector CBCT scan with about 12 respiratory cycles, displayed with 30 rpm.
Patient data provided by Memorial Sloan–Kettering Cancer Center, New York, NY. C = -200 HU,  W = 1400 HU

asMoCo: Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” Med. Phys. 51(9), 3688–3695, 2007.
acMoCo: Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-compensated cone-beam CT 

in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012.
acMoCo: Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific artifact model for 

motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.
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• Regularization

 Two Gaussian convolution
kernels

• Static target image

• Model to be deformed

• Find transformation vector 
field    , i.e. 

• Demons algorithm

 Displacement update      by 
intensity matching on linear 
approximation

Demons Deformable Registration

Position

Thirion, “Image matching as a diffusion process: An analogy with 
Maxwell’s demons,” Medical Image Analysis 2(3), 243–260, 1998.

Target

Model

Deformed model 
matching target
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VoxelMorph Deformable Registration

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. and Dalca, A. V., “VoxelMorph: A Learning Framework for
Deformable Medical Image Registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800, 2019.
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Demons vs. VoxelMorph
• Cost/loss functions of Demons and VoxelMorph are identical if we use the 

L2-norm for the vector field regularization and the MSE for the image 
similarity

• Demon’s hierarchical registration cascade corresponds to VoxelMorph’s 
hierarchical encoder/decoder stages.

• Both methods can be extended to estimate a diffeomorphic vector field, i.e. 
a differentiable and invertible vector field.

• Demons minimizes the cost function for every patient, while VoxelMorph 
learned to minimize it for the training parients and then applies its 
knowledge to other patients. 

• Demons may be slower than VoxelMorph (a thorough comparison is 
missing), but is potentially more reliable and predictable.

• Voxel morph may learn motion patterns from training patients that are not 
visible in the test patient and then apply such patterns during inference 
(e.g. contrasted vs. non-contrasted liver).

• A combination of VoxelMorph followed by one Demons iteration may be 
ideal.
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CBCT images: C = 0 HU, W = 2000 HU. Difference images: C = 0 HU, W = 400 HU. 
MVFs: C = 0 mm, W = 12 mm.

Original strongly regu-
larized Demons

weakly regu-
larized Demons 

pretrained 
VoxelMorph

pretrained and
overfitted VM

overfitted
VoxelMorph

RMSE: 131 HU 88 HU 67 HU 58 HU 43 HU 58 HU

MVFx

MVFy

MVFz

Dst

T(Src)

Dst-T(Src)

Dst

Src

Dst-Src

FWHM: 1.7 voxelsFWHM: 18 voxels FWHM: 0.24 voxels FWHM: 0.24 voxelsFWHM: 0.24 voxels
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Deep Cardiac Motion Compensation

???
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Motivation

• Cardiac CT imaging is routinely used 
for the diagnosis of cardiovascular 
diseases, especially those related to 
coronary arteries.

• Imaging of coronary arteries places 
high demands on the spatial and 
temporal resolution of the CT 
reconstruction.

• Motion artifacts and image noise may 
impair the diagnostic value of the CT 
examination.

CTCA image of the right coronary artery1

Significant 
stenosis

Nonsignificant 
stenosis

CTCA image of the left coronary artery2

[1] W. B. Meijboom et al., “64-Slice Computed Tomography Coronary Angiography in Patients With High, Intermediate, or Low Pretest Probability of Significant 
Coronary Artery Disease”, J. Am. Coll. Cardiol. 50 (15): 1469–1475 (2007).
[2] R. Leta et al., “Ruling Out Coronary Artery Disease with Noninvasive Coronary Multidetector CT Angiography before Noncoronary Cardiovascular Surgery”, 
Heart 258 (2) (2011).
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Motivation

Motion artifacts

High noise levels

*

* G. Pontone et al., “Determinants of Rejection Rate for Coronary CT Angiography Fractional 
Flow Reserve Analysis”, Radiology, 292(3), 597–605 (2019)

C = 0 HU, W = 1200 HU 
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*

Motivation

Motion artifacts

High noise levels

* G. Pontone et al., “Determinants of Rejection Rate for Coronary CT Angiography Fractional 
Flow Reserve Analysis”, Radiology, 292(3), 597–605 (2019)

C = 0 HU, W = 1200 HU 

Deep learning-based motion compensation to 
remove motion artifacts.

Iterative reconstruction (Siemens ADMIRE) to 
reduce noise.
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Partial Angle-Based Motion 
Compensation (PAMoCo)

Animated rotation time = 100 × real rotation time
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Partial Angle-Based Motion 
Compensation (PAMoCo)
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Partial Angle-Based Motion 
Compensation (PAMoCo)

Apply motion vector fields (MVFs) to partial angle reconstructions

Motion vector field



226

Partial Angle-Based Motion 
Compensation (PAMoCo)

Prior work:

[1] S. Kim et al., “Cardiac motion correction 
based on partial angle reconstructed images 
in x-ray CT”, Med. Phys. 42 (5): 2560–2571 
(2015).

[2] J. Hahn et al., “Motion compensation in 
the region of the coronary arteries based on 
partial angle reconstructions from short-scan 
CT data”, Med. Phys. 44 (11): 5795–5813 
(2017).

[3] S. Kim et al., “Cardiac motion correction 
for helical CT scan with an ordinary pitch”, 
IEEE TMI 37 (7): 1587–1596 (2018).

 Limitation: Challenging / time-
consuming optimization
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Spatial 
transformer

Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

PARs centered 
around coronary 
artery

Neural network to predict 
parameters of a motion model

Application of the motion model to 
the PARs via a spatial transformer1

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017–2025 (2015).

Reinsertion of patch into 
initial reconstruction
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Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017–2025 (2015).

Motion model
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Spatial 
transformer

Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

PARs centered 
around coronary 
artery

Neural network to predict 
parameters of a motion model

Application of the motion model to 
the PARs via a spatial transformer1

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017–2025 (2015).

Reinsertion of patch into 
initial reconstruction



230

Patch extraction

Training Data Generation

• Removal of coronary arteries from real CT 
reconstructions.

• Insertion of artificial coronary arteries with different 
shape, size, and contrast.

• Simulation of CT scans with coronary artery motion.

Forward 
projection

Motion simulation
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Results
Measurements, patient 1

C = 1000 HU
W = 1000 HU
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J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Results
Measurements, patient 2
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C = 1000 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Results
Measurements, patient 3
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C = 1100 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 5

C = 0 HU, W = 1200 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 6

C = 0 HU, W = 1400 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 7

C = 0 HU, W = 1600 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 8

C = 0 HU, W = 1000 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Adaptions for CBCT

• Consideration of the entire FOM
– Estimation of a dense vector field for every voxel within the FOM.

• Slow rotation speed
– Projections can only be grouped into tiny groups (here, no 

grouping is performed at all)

– Partial angle reconstruction (PAR)

• 4D output
– Estimation of MVF from two arbitrary PARs

– Similar to Voxelmorph but with PARs

• Modification of PARs to add morphological context.
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Workflow
Phase A Phase B
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training
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Modified SARs

• Modified PARs are calculated as

wich is a kind of SART update.

• Here X is the x-ray tranform operator, f3D is the 3D 
reconstruction of the moving projections, and C is a 
cast operator that converts its argument to the 
nearest integer multiple of 50 HU.
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Modified SARs

WashU PARs Modified PARs
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Data Generation & Training

• 49 4D CT scans (10 respiratory phases each) of the WashU
dataset were used as prior images.

• For each of the 10 phases of every patient, modified PARs were 
calculated.

• For any of the 100 combination of the 10 phases a ground truth 
vector field was calculated using a Voxelmorph-like approach.

• Subsequently a U-net-like architecture was used to predict 
these ground truth vector fields from two arbitrary input PARs 
of the same patient.
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Measurement MSK 1
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Measurement MSK 1
External Respiration Signal vs. Intrinsic Signal

• Intrinsic signal: 

– Threshold: All voxels < -100 HU = 1, other voxels = 0

– Signal = mean inside ROI containing lung and diaphragm.

• Normalization of both signals to [0,1].

External

Intrinsic
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Measurement 20120629_VUMC_4DThorax
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Measurement 20120629_VUMC_4DThorax
External Respiration Signal vs. Intrinsic Signal

• Intrinsic signal: 

– Threshold: All voxels < -100 HU = 1, other voxels = 0

– Signal = mean inside ROI containing lung and diaphragm.

• Normalization of both signals to [0,1].

External

Intrinsic
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Part 7: Interventional Imaging
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Intervention goes Deep!
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Deep DSA

???

Without mask?



264

Conventional DSA

Deep DSA

• Train on static cases where ground truth is conventional DSA

Methods
General principle

Concatenate

Conv k3s1p1- ReLU - Dropout

MaxPool 2x2

TrpConv k4s2p1 - ReLU - Dropout

− =

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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Conventional DSA

Deep DSA

• Train on static cases where ground truth is conventional DSA

• During inference CNN can be applied to both static and dynamic 
cases

Methods
General principle

Concatenate

Conv k3s1p1- ReLU - Dropout

MaxPool 2x2

TrpConv k4s2p1 - ReLU - Dropout

− =

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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Results

Original x-ray sequence

Ground truth DSA

CNN output

Artificially 
introduced 
stenosis?

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.

Due to a low amount of training data and a low 
variability of the training data available to us the 
results shown on this slide are not optimal, yet. 
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Fluoroscopy DSA (fluoro minus mask) Deep DSA (from fluoro only)

Deep DSA

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.

Due to a low amount of training data and a low 
variability of the training data available to us the 
results shown on this slide are not optimal, yet. 
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Conventional DSA 
infeasible due to

C-arm motion

Results
Bolus chase study
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Deep DSA at 𝐭 = 𝒕𝒂

Deep DSA at 𝐭 = 𝒕𝒂

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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???

At 2D+T dose?

Deep 3D+T Fluoroscopy
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either 2D+T fluoroscopy

or 3D tomography

High temporal resolution, but only 2D

Low temporal resolution, but 3D

3D+T 
tomographic 
fluoroscopy?
At low dose?

How???

Deep 3D+T Tomographic Fluoroscopy
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How to Realize 3D+T Fluoroscopy
• Low dose by:

– Low tube current

– Very few projections (pulsed mode)

• Advantages of intervention guidance:
– Repetitive scanning of the same body region: changes are sparse.

– Interventional materials are fine structures (few voxels) of high 
contrast (metal).

Prior scan
400 projections

Intervention scan
16 projections Experimental setup

Pig in-vivo

B. Flach, J. Kuntz, M. Brehm, R. Kueres, S. Bartling, and M. Kachelrieß. “Low dose tomographic 
fluoroscopy: 4D intervention guidance with running prior.”, Med. Phys. 40:101909, 11 pages, October 2013.
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3D+T Image Guidance at 2D+T Dose
Stent Expansion in the Carotis of a Pig with Angio Roadmap Overlay

Dose of the yet unoptimized approach: 20 to 50 µGy/s.

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). 
This work was further selected as the Editor's Pick for the Medical Physics Scitation site.
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3D+T Fluoroscopy at 2D+T Dose
Guide Wire in the Carotis of a Pig with Angio Roadmap Overlay

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). 
This work was further selected as the Editor's Pick for the Medical Physics Scitation site.

Dose of the yet unoptimized approach: 20 to 50 µGy/s. 
Obviously, 16 projections are still too much.

Deep learning will help (5 years later)!
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Deep Learning-Based 3D+T Fluoroscopy
Deep Tool Extraction (DTE) + Feldkamp Recon (FDK) + Deep Tool Reconstruction (DTR)

Input projections
at current time step

Patient-only projections
accumulated over past 

timesteps

Tool-only projections
at current time step

Sparse reconstruction 
of interventional tools

DTE

FDK

Segmentation of
interventional tools

DTR

FDK +

+

Patient-only
reconstruction

Combined 
reconstruction, 

final image

𝒖

𝒗

𝒙

𝒚

𝒙

𝒚

𝒙

𝒚

𝒙

𝒚

𝒖

𝒗

𝒖

𝒗

E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2021.

This paper received the 
Sylvia&Moses Greenfield Award for 
the best scientific paper on imaging 

in Medical Physics in 2021.
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DTE Example 1
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E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper in Medical Physics in 2021.
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DTE Example 2
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E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper in Medical Physics in 2021.
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DTE

DTE
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More DTE Results

Evaluate DTE on

• Fluoroscopy scans (top)

• Measurements of 
interventional tools and 
devices superimposed with 
patient CBCT (bottom)

• Good qualitative results on 
fluoroscopy data even 
though it differs from 
training data

• Good qualitative & 
quantitative results on 
superimposed data

Tool MAPE [%]

Guide wires 6.0 ± 0.1

Stents 13.4 ± 2.1

Coils 13.2 ± 1.6

E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper in Medical Physics in 2021.
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Zeego @ Stanford University

E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper in Medical Physics in 2021.
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E. Eulig, J. Maier, M. Knaup, R. Bennett, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-based reconstruction of interventional 
tools and devices from four x-ray projections for tomographic interventional guidance. Med. Phys. 48(10):5837-5850, October, 2021. 

This paper received the Sylvia&Moses Greenfield Award for the best scientific paper in Medical Physics in 2021.

Zeego Measurements
with Just 4 Projections

Ground truth (measurements from 400 projections)

Neural network output (from just 4 projections)

Loop through slices reconstructed
from just 4 projections without AI:

Stent 
examples:
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Conclusions on Deep CT

• Machine learning will play a significant role
in CT image formation.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers and variational networks with rawdata 
access may ensure that the information that is made up is 
consistent with the measured data.

– …



Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD programs or through marc.kachelriess@dkfz.de. 

Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


