Basics of
CT Image Reconstruction

Marc KachelrieB3
German Cancer Research Center (DKFZ)

Heidelberg, Germany
www.dkfz.de/ct

DEUTSCHES
z KREBSFORSCHUNGSZENTRUM
. IN DER HELMHOLTZ-GEMEINSCHAFT




Fan-Beam Geometry
(transaxial / in-plane / x-y-plane)

Kray tube

WP | tield of measurement
(FOM) and object

detector (typ. 1000 channels)




Acquisition

>

Reconstruction

Object, Image

/

Sinogram, Rawdata




Sensation

In the order of 1000 projections
with 1000 channels are acquired
per detector slice and rotation.
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Data Completeness

Each object point must be viewed by an angular interval of
180° or more. Otherwise image reconstruction is not possible.




Data Completeness

Any straight line through a voxel must be intersected by the
source trajectory at least once.




Emission vs. Transmission

Emission tomography Transmission tomography
Infinitely many sources * A single source

No source trajectory « Source trajectory is the major
issue

Detector trajectory may be an -+ Detector trajectory is an
issue important issue

3D reconstruction relatively « 3D reconstruction extremely
simple difficult




Analytical Image Reconstruction




Solution




2D: In-Plane Geometry

Decouples from longitudinal geometry
Useful for many imaging tasks
Easy to understand

2D reconstruction
— Rebinning = resampling, resorting
— Filtered backprojection




Fan-beam geometry Parallel-beam geometry

lateral
rebinning










In-Plane Parallel Beam Geometry

Measurement: :
p(¥,€) = Rf(9,§) = [dxdy f(x,y)d(xcosd + ysind — &)




Filtered Backprojection (FBP)

Measurement: p(¥,&) = /d:z:dy f(x,y)d(xcos¥ + ysiny — &)

Fourier transform:
/dﬁp(ﬁj g)e—meu _ /da:dy f(z, y)e—Qmu(a: cos ¥ + y sin )

This is the central slice theorem: P(v,u) = F(ucos, usin )

Inversion: f(z,y) :/ah?/du u| P (9, u)€2m'u(x cos ¥ + ysin ¥)
0 —o0

&=x cos ¥+ysin v




Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.
2. Backproject the filtered data into the image:
| 1 A\

\

Smoofh Standard

Reconstruction kernels balance between spatial resolution and image noise.







Backprojection




Scan

Start of | N .
spiral scan . / trajectory

—r—=
=t
1)

table increment

number of slices - slice thickness

Direction of
continuous
patient
transport

1996: 1998: 2002: 2004:
1¥5mm, 0.75s 41 mm,05s 16x%0.75mm, 0.42s 2:32x0.6 mm, 0.33 s

Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)



360° LI Spiral z-Interpolation
for Single-Slice CT (M=1)

_ ¢
p_MS_

Spiral z-interpolation is typically a linear interpolation between points
adjacent to the reconstruction position to obtain circular scan data.




without z-interpolation with z-interpolation




180° LI Spiral z-Interpolation
for Single-Slice CT (M=1)

180° spiral z-interpolation interpolates between direct and
complementary rays.




Spiral z-Filtering for Multi-Slice CT
M=2, ..., 6

d <1.5

p:M—S_

For complete data:
21 cos(D/2)

<
P> T+ P

£ — ZR We find:
p < 1.4 for 52° fan angle

Spiral z-filtering is collecting data points weigl P < 1-2 for 43° fan angle .
trapezoidal distance weight to obtain circular scan data.




CT Angiography:
Axillo-femoral
bypass

M=4

120cmin40s

0.5 s per rotation
4x2.5 mm collimation
pitch 1.5




The Cone-Beam Problém

1x5mm 4x1 mm 16%0.75 mm 2-32x0.6 mm 256%x0.5 mm
0.75 s 0.5s 0.375 s 0.375 s <<1s?




Advanced single-slice rebinning in cone-beam spiral CT

Marc KachelrieR?
Institute of Medical Physics, University of Erlangen—Niirnberg, Germany

Stefan Schaller
Siemens AG, Medical Engineering Group, Forchheim, Germany

Willi A. Kalender

Institute of Medical Phyvsics, University of Erlangen—Niimberg, Germany
(Received 11 August 1999: accepted for publication 12 January 2000)

To achieve higher volume coverage at improved z-resolution in computed tomography (CT), sys-
tems with a large number of detector rows are demanded. However, handling an increased number
of detector rows, as compared to today’s four-slice scanners. requires to accounting for the cone
geometry of the beams. Many so-called cone-beam reconstruction algorithms have been proposed
during the last decade. None met all the requirements of the medical spiral cone-beam CT in regard
to the need for high image quality. low patient dose and low reconstruction times. We therefore
propose an approximate cone-beam algorithm which uses virtual reconstruction planes tilted to
optimally fit 180° spiral segments, i.e.. the advanced single-slice rebinning (ASSR) algorithm. Our
algorithm is a modification of the single-slice rebinning algorithm proposed by Noo et al. [Phys.
Med. Biol. 44, 561-570 (1999)] since we use tilted reconstruction slices instead of transaxial slices
to approximate the spiral path. Theoretical considerations as well as the reconstruction of simulated
phantom data in comparison to the gold standard 180°LI (single-slice spiral CT) were carried out.
Image artifacts. z-resolution as well as noise levels were evaluated for all simulated scanners. Even
for a high number of detector rows the artifact level in the reconstructed images remains compa-
rable to that of 180°LI. Multiplanar reformations of the Defrise phantom show none of the typical
cone-beam artifacts usually appearing when going to larger cone angles. Image noise as well as the
shape of the respective slice sensitivity profiles are equivalent to the single-slice spiral reconstruc-
tion, z-resolution is slightly decreased. The ASSR has the potential to become a practical tool for
medical spiral cone-beam CT. Its computational complexity lies in the order of standard single-slice
CT and it allows to use available 2D backprojection hardware. © 2000 American Association of
Physicists in Medicine. [S0094-2405(00)00804-X]

Key words: computed tomography (CT). spiral CT. multi-slice CT, cone-beam detector systems.
3D reconstruction

KachelrieB et al., Med. Phys. 27(4), April 2000 dikfz.



The ASSR Algorithm

Mean deviation at distance R);:
at distance R:

A=0.007-d
A=0.014-d

KachelrieB3 et al., Med. Phys. 27(4), April 2000




d—Filtering in the Image Domain
d

. Primary,
—~— "~

* No in-plane interpolations
* Interpolation along d
* Arbitrary d-filter width

KachelrieB3 et al., Med. Phys. 27(4), April 2000




Comparison to Other Approximate Algorithms
I180°LI d=1.5mm IId=64mm MFR d=64mm ASSR d=64mm

H. Bruder, M. Kachelriel3, S. Schaller. SPIE Med. Imag. Conf. Proc., 3979, 2000




with ASSR

) - High image quality
i - High performance § 4

¥ ° Use of available
¢ 2D reconstruction
WETNELLE

* 100% detector usage {

- Arbitrary pitch \

\ §

+ Sensation 16

e 0.5 s rotation

* 16x0.75 mm collimation
» pitch 1.0

e« 70cmin29s

1.4 GB rawdata

* 1400 images




CTA, Sensation 16

Data courtesy of Dr. Michael Lell, Erlangen, Germany




CT-Angiography

Sensation 64 spiral scan with 2.32x0.6 mm and 0.375 s
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Extended Parallel Backprojection (EPBP)

3D and 4D Feldkamp-Type Image Reconstruction
for Large Cone Angles

Trajectories: circle, sequence, spiral
Scan modes: standard, phase-correlated
Rebinning: azimuthal + longitudinal + radial

Feldkamp-type: convolution + true 3D backprojection
100% detector usage

Fast and efficient

Kachelrief3 et al., Med. Phys. 31(6), June 2004




longitudinally
rebinned _
detector =~ _ =

Kachelriel3 et al., Med. Phys. 31(6), Juries




The complicated
pattern of overlapping
data ...

... Will become even
more complicated with
phase-correlation.

= Individual voxel-by-
voxel weighting and
normalization.




The 180° Conditjon

J-dzﬁl w(t)=rx 180° in 3 segments

and

> w(d+km) =1

The (weighted) contributions to each object point
must make up an interval of 180° and weight 1.




KachelrieB et al., RSNA 2002, Fully3D 2003 and . » 256 slices
Med. Phys. 31(6): 1623-1641, 2004 k: - - (0/300)




EPBP Std EPBP CI 0% K-K  EPBP CI, 50% K-K

Patient example, 32x0.6 mm, z-FFS, p=0.23, t,=0.375 s.



Iterative Image Reconstruction




Model

(@ Amn)Q —Y

2 2 _
Lo + 20,A%, + 2. = Y

equation




0.5(3 —z2)/z,

xo = 1.

r1 = 2.

ro = 1.75

r3 = 1.73214
rqs = 1.73205
rs = 1.73205
re = 1.73205
x7 = 1.73205
rg = 1.73205

Influence of Update Equation and Model

0.5(3 —z2)/zy,

xo = 1.74667
r3 = 1.73502
ry = 1.73265
rs = 1.73217
rxg = 1.73207
x7 = 1.73206
xg = 1.73205

ro = 1.

r1 = 2.

ro = 1.67823
r3 = 1.68833
rys = 1.68723
rs = 1.68734
rg = 1.68733
rx7 = 1.68733
rg = 1.68733




1. Problem

2. Solution

3. Discretization

1. Problem

2. Discretization

3. Solution

Analytical Reconstruction

pwgdzjim%ﬂawaxmmwmmmﬂ—@

v

ﬂaw:ﬁwm&a*ma

0

&E=x cos ¥4y sin ¥

f=R -K-p=R -(kxp)

Classical lterative Reconstruction

p(, &) = fd:z:dy f(x,y)o(xcosd + ysin — &)

p=R-f




(?“11

21

CT System Matrix

R-f=p

Radon or x-ray
transform

22

\"“N1 N2

image to be
reconstructed

?“1M\
ram

7"NM/

measured
rawdata

/ﬁ\
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Forward Projection




Kaczmarz‘'s Method

R-f=p

N x M 7!




Kaczmarz's Method (2)

« Successively solve 7, - f = p,
 To do so, project onto the hyperplanes

o (f +Ar0) = pa
A=pp—7Tn-f
JToew = F + ATy
Frow = F +7u(pn — 70 f)
* Repeat until some convergence criterion is reached
fopr=F, tra(Pn—7Tn-f,)




Kaczmarz's Method (3)

f;/+1 — ,fy + T (pn —Tp: f;/)




Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique
(ART)

fv—l—lzfr/_l_rn(pn_rn'fu)

p—R-f
—f +R'. v
fu+1 f R21




Kaczmarz's Method = ART

r1-f = p




Kaczmarz's Method = ART




apply inverse model

apply forward model







Flavours of Iterative Reconstruction

p_RfI/

. ART =f,+R".
f—l—l f R2'1

1 RTp_RfI/

. SART =

R . (e—R—f,,)
R'. (e—P)

+ MLEM  f,,, = f,

R'. (e—R-fy _ e—p)

. =f,+
osc f..au=1. fVRT.(eR.fVR,fV)

« and hundreds more ...




lterative Reconstruction: Parameters

« Image/object representation

— Pixel centers _ E :
— Pixel area f(x? y) - f'rnb(gj _ ':Cm? y _ ym)
— Blobs UL
— Sampling density (pixel size, pixel locations, ...)
Forward model (forward projection)
Joseph-type, Bresenham-type, distance-driven-type, ...
Needle beam (infinitely thin ray), many needle beams per ray, ...
Beam shape (varying beam cross-section, angular blurring, ...)

Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, ...)

Objective function, update equation
— Statistical model (Gaussian, Poisson, shifted Poisson, ...)

_ ... _ . 2
Regularisation (edge-preserving, ...) C(f) _ (R : f _ p)

— Artifact reduction

Inverse model (backprojection)
— Transpose of forward model
— Pixel-driven backprojection
— Filtered backprojection




Image Representation




Image Representation




Image Representation




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Image Representation and
Forward Model are Linked!

Joseph’s forward projector




What Makes lterative Recon
Attractive?

No need to find an analytical solution
Works for all geometries with only small adaptations
Allows to model any effect

Allows to incorporate prior knowledge
— nhoise properties (quantum noise, electronic noise, noise texture,

..)

— prior scans (e.g. planning CT, full scan data, ...)
— Iimage properties such as smoothness, edges (e.g. minimum TV)

Handles missing data implicitly (but not necessarily
better)

L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. KachelrieB, Phys. Med. Biol. 57, Jan. 2012 cll¢fZe




Cardiac Cycle of a Mouse

Axial Sagittal Coronal

Cardiac Gating : AC=10%
Image window: C=0 HU/W=1200 HU

L. Ritschl, F. Bergner, C. Fleischmann, and M. KachelrieB, Phys. Med. Biol. 56, Feb. 2012
2L, Ritschl, S. Sawall, M. Knaup, A. Hess, and M. KachelrieB, Phys. Med. Biol. 57, Jan. 2012




Generations of Reconstruction

2007 2011 2015 2020
(analytical) (iterative) (MoCo) (?2229?)

f‘

voxels are stationary voxels may move

C =400 HU, W= 1400 HU




Downsides

Classical iterative recon is slow!
Classical iterative recon cannot do small FOVs.
There are many open parameters.
The reconstruction is non-linear.
Can we trust the images?




Ordered Subsets

Divide one iteration into S sub-iterations.
Each of these S subsets covers N/S projections.

During one iteration all subsets and therefore all
projections are used exactly once.

Per iteration the volume is updated S times (once per
sub-iteration).

An up to S-fold speed-up can be observed.




Ordered Subsets
lllustration for N = 32 Projections

Conventional procedure without subsets (S=1)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with S = 8 sub-iterations (4 projections per subset)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31




Ordered Subsets

;28 29 30 31

N =32, S=8, i.e. 4 projections per subset




Sequence Can be Generated Using
Simple Bit Reversal

-> (0]
16
8
24
4
20
12
28
2
18
10
26
()
22
14
30
1
17
9
25
5
21
13
29
3
19
11
27
7
23
15
31

oJooudbd WDNDR




Using Ordered Subsets Makes it Faster!

S =1 (no subsets) S = 32 (ordered subsets)

-

-

C=0HU, W=1000 HU




Image Updates

S =1 (no subsets) S = 32 (ordered subsets)

C=0HU, W=1000 HU




Reconstructing Small FOVs

N forward project

0 me———
e
FBP FBP with clipped ROI

reconstruct
analytically

reconstruct
iteratively

—

Sinogram | ROI sinogram IROI reconstruction

A. Ziegler, T. Nielsen, and M. Grass, “Iterative Reconstruction of Region of Interest for Transmission dkf
Tomography”, Med. Phys. 35 (4), Mar. 2008 e




Practical Ways to do it lterative

* In many cases artifact correction is iterative
— Higher order beam hardening correction
— Cone-beam artifact correction
— Scatter correction

* Practical “iterative reconstruction” approaches
— often use empirical solutions
— combine iterative with analytical reconstruction

— combine iterative or analytical reconstruction with image
restoration




lterative Reconstruction

Aim: less artifacts, lower noise, lower dose

Iterative reconstruction
— Reconstruct an image.
— Does the image correspond to the rawdata?

— If not, reconstruct a correction image and continue. g
SPECT + PET are iterative for a long time! g

CT product implementations
— ASIR (adaptive statistical iterative reconstruction, GE)
— iDose (Philips)
— IRIS (image reconstruction in image space, Siemens)
— AIDR 3D (adaptive iterative dose reduction, Toshiba)
— VEO, MBIR (model-based iterative reconstruction, GE) |l
— IMR (iterative model reconstruction, Philips) '

« P
4; If ‘
(\
S o
. : - ‘
G
— SAFIRE, ADMIRE (advanced modeled iterative reconstruction, Siemens)

— FIRST (forward projected model-based iterative reconstruction solution,
Toshiba)




apply inverse model

i €

regularize regularize
rawdata image
A A

t

apply forward model |

Rawdata regularization: adaptive filtering?, precorrections, filtering of
update sinograms...

Inverse model: backprojection (R") or filtered backprojection (R). In
clinical CT, where the data are of high fidelity and nearly complete, one
would prefer filtered backprojection to increase convergence speed.
Image regularization: edge-preserving filtering. It may model physical
noise effects (amplitude, direction, correlations, ...). It may reduce noise
while preserving edges. It may include empirical corrections.

Forward model (R,,): Models physical effects. It can reduce beam
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, ...

. Kachelrie3 et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001 dk‘fz.




> apply inverse model |

—

regularize
rawdata

_ 1

Conventional FBP with rawdata denoising (all vendors)

> apply inverse model |

{ apply forward model |e

Veo123/MBIR (Ge)

M. Kachelrie3. Current Cardiovascular Imaging Reports 6:268-281, 2013

>| apply inverse model |

— —_—

regularize regularize
rawdata image

_ 1 |

AIDR3D (Canon), ASIR, ASIR-V (Ge), IRIS (Siemens),
iDose (Philips), SnapShot Freeze (GE), iTRIM (Siemens)

>| apply inverse model |

‘—.

regularize regularize
rawdata image

_ 1 L

{ apply forward model |e

FIRST (Canon), IMR (Philips), SAFIRE, ADMIRE (Siemens)

dkfz.




Plain FBP Siemens Standard IRIS VA34 SAFIRE VA40

>

c =26.8 HU c=7.8HU

apply inverse model apply inverse model apply inverse model apply inverse model
| £ £ Lo —
regul” _e regul> B regularize regul> - o . regularize regularize A regularize regularize .
r ata i g wf&g e . MRE rawdata image w}—&!f rawdata image o xy’_\_:}_

apply for ﬂlq—l apply for ﬂlq—, apply Icr'ﬂlq—, apply forward model

CT images provided by Siemens Healthcare, Forchheim, Germany dk‘fz.
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Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA. dk‘fz.




Courtesy of Dr. Thomas Kéhler, Philips, Germany.




Filtered Backprojection AIDR3D

= Darea 15 L
"‘..-‘ ..t" .r'.
BN A = .
N o Az delle % 4
.5 il
. - e A e
; e R e
LT o R e S
: Yoo 3 e
q l...‘\"r 8 -ue . .
E gl * »
g H
s
b

1522 63 HU'

Courtesy of Dr M Chen, NHLBI, National Institutes of Health, USA dikfz.




Original CBCT Reconstruction iICBCT Reconstruction

Increased homogeneiti/_, less image noise due to Acuros
scatter correction and iterative image reconstruction

=

C=0HU, W=1000 HU
Courtesy of Dr. Pascal Paysan, Varian iLab, Baden, Switzerland. dk‘fz.




Vendor’s Improvements
in Iterative Reconstruction

Standard : SAFIRE ADMIRE
B40 140/5 140/5

Images provided by Siemens Healthcare, Forchheim, Germany dk‘fz.




Vendor’s Improvements
in Iterative Reconstruction

U

Standard | SAFIRE ADMIRE
B64 164/5 164/5

Extremely low dose case: CTDI,, = 0.04 mGy, DLP = 1.64 mGy-cm, D = 0.025 mSv

Images provided by Siemens Healthcare, Forchheim, Germany dk‘fz.




Vendor’s Improvements
in Iterative Reconstruction

Canon Aquilion ONE ViSION FIRST Edition

Akagi et al. Full Iterative Reconstruction Optimized for Specific Organs - dkf
Principle and Capabilities. RSNA 2015. y &5




Usual Assumption:
CT is Linear and Translation Invariant

 PSF and MTF are well-defined
Noise is well-defined
Noise and spatial resolution are related
Parameters are valid for all objects
Simple phantoms can be used to assess image quality

)

(TN
g

I
\




Analysis of Siemens’ SAFIRE Algorithm

(Taken at the Siemens Somatom Flash DSCT Scanner)

« Semiantropomorphic phantom

— 20 cm x 30 cm thorax phantom of 20 cm length with 2.5 cm water extension
ring, totalling to 25 cm x 35 cm size

— 10 cm QRM 3D medium contrast insert with 40 HU background and 20 HU
lesions (at 120 kV)

e Scan and recon parameters
2:64 x 0.6 mm collimation
U=120 kV
p=0.6
t;=1.0s

Sets = 0.6 mm _

1 high dose scan with 1100 mAs_« \ *
25 low dose scans with 44 mAs, each g R SRS _
FBP ( = analytical): B30s, B50s T~ C=50 HU, W=100 HU e
SAFIRE ( = iterative): I130s and 150s, strengths 3 and 5
Averaging of 25 low dose scans after reconstruction
MeantStdDev in large medium contrast lesion

Display at C = 50 HU and W =100 HU

Low Dose Average High Dose




Average of 25 Low Dose Scans

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)
19+ 12 HU 19+ 8 HU 19+ 5 HU




High Dose Scan

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)
18 + 10 HU 18 £ 6 HU 19 +4 HU




Noise Evaluation using Sigma Images

« Same phantom as in example 1
- Same scans as in example 1

« Calculation of sigma images from the 25 independent samples
— Compute unbiased estimator for the sample variance for each pixel
— Take the square-root of each pixel’s estimated variance

FBP (B30s) SAFIRE (130s strength 3) SAFIRE (I130s strength 5)

C =40 HU, W=50 HU




Noise vs. mAS

(Taken at the Siemens Somatom Flash DSCT Scanner)

Abdomen phantom + small fat ring
Tube voltage U = 120 kV

Slice thickness S = 0.6 mm

Pitch p=0.6

Variation of the effective tube current
— mAs_ 4 = 100 mAs ... 550 mAs
— DLP =57 ... 312 mGy-cm

Noise was measured in VOIs




Image Noise vs. mAs,

> 1/sqrt(l- T,o,/ p)
1/sqrt(400 mAs) 1/sqrt(100 mAs)




Analysis of GE's MBIR (Veo)
Iterative Reconstruction Algorithm

Statistical model based iterative reconstruction (MBIR) in clinical CT

systems. Part ll. Experimental assessment of spatial resolution
performance

Ke Li
Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison,

Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue,
Madison, Wisconsin 53792

John Garrett and Yongshuai Ge
Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenuie,
Madison, Wisconsin 53705

Guang-Hong Chen?
Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison,

Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue,
Madison, Wisconsin 53792

(Received 8 March 2014: revised 9 May 2014; accepted for publication 2 June 2014: published 23
June 2014)

Li et al., MedPhys 41(7), July 2014 dikfz.



Contrast Dependency of the PSF

(of GE’s FBP and Veo Algorithms)

Object 1 Object 2 Object 3

O Veo QO Veo O Veo

Veo (fitting) Veo (fitting) Veo (fitting)
O FBP ] L O FBP | O FBP ]
’ - — -FBP (fitting) - — - FBP (fitting)

o
[N
o
o

e
Y
)

o
o
[=]
-

Point Spread Function
Point Spread Function
Point Spread Function

e
o
51

Contrast (HU) ’

o
\ . . \ . . f \ . \ a . \ . . . =
. -15 -1 =05 0 05 1 . . 0.5 . -5 -1 =05 0 05 1 15
Object 2 Position (mm) Position (mm) Position (mm)
Object 3 )
a b c
Object 4 () ) ()

Object 5 : Object 5 Object 6 Object 7
Object 6 ) . : : . : . ‘ . : . . ‘

Object 7
Object 8

Object |

O Veo O Veo O Veo
Veo (fitting) Veo (fitting) Veo (fitting)

o FBP | 2l O FBP | i O O FBP
- — = TBP (fitting) = = -FBP (fitting) - — —FBP (fitting)

Normal cuts Edge profile at
1 arbitrary location

Point Spread Function
Point Spread Function
Point Spread Function

3 - : : - . 0 = L - ) - L — =
-5 -1 =05 0 05 1 E S5 -1 -05 0 05 . -0.5 0 05
Position (mm Position (mm Position (mm

Li et al., MedPhys 41(7), July 2014 dikfz.
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Dose Dependency of the PSF

(of GE’s FBP and Veo Algorithms)

Object 4 (contrast = 120 HU) Object 6 (contrast = 346 HU)

O 25%dose O  25% dose
O 50% dose O 50% dose
A 75% dose A 75% dose
+ 100% dose + 100% dose

Point Spread Function

== Veo (Object 4)

== Veo (Object 6)
= = =TBP ]

15 1 05 0 05 5 5 -1 -05 0 05 . " 25%

Position (mm) Position (mm)

Li et al., MedPhys 41(7), July 2014

50% 75% 100%
Dose

dkfz.



Conclusions on Li et al. (Veo Algorithm)

« Our previous findings (from the simple examples) are
confirmed.

« Spatial resolution is a function of
— location
— contrast
— dose




Summary

- Analytical image reconstruction
— Is compute efficient
— requires new solutions for new trajectories
— is what most images are reconstructed

with

- lterative image reconstruction
— requires much more computational effort
— allows to easily model constraints

— allows to incorporate prior knowledge . ISt Cliomand

t 405 dOSe

 Practical modern solutions

— often are a combination of analytical and
iterative recon

— are offered by the major manufacturers of
diagnostic CT

« Future
— Let neural networks do the regularization

Images provided by Siemens Healthcare, Forchheim, Germany




Thank You!
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Conference Chair: Marc KachelrieB, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ'’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Niirnberg, Germany.




