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What does CT Measure? _.

X-rays are generated in an x-ray tube.

The polychromatic radiation is attenuated
In the patient. X-ray photon attenuation is AT
dominated by the photo and the Compton effect.

Detectors measure the x-ray intensity after the rays
have passed through the patient along several lines L.

The log intensity is the so-called x-ray transform:

I(L) —/dLu('r‘a E)
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Often, the follwing monochromatic approximation is used:

p(L) = / ALu(r, Eu)




Wedge filter
Additional filters

Bow-tie filter

Detector

Figure not drawn to scale. Order of prefiltration may differ from scanner to scanner. dku.




Basic Parameters
(best-of values typical for modern scanners)

In-plane resolution: 0.4 ... 0.7 mm

Nominal slice thickness: $S=0.5... 1.5 mm
Effective slice thickness: S = 0.5 ... 10 mm
Tube (max. values): 120 kW, 150 kV, 1300 mA
Effective tube current: mAs_ = 10 mAs ... 1000 mAs
Rotation time: 7., =0.25... 0.5 s
Simultaneously acquired slices: M= 16 ... 320
Table increment per rotation: d=1 ... 183 mm
Pitch value: p=0.1 ... 1.5 (up to 3.2 for DSCT)
Scan speed: up to 73 cm/s

Temporal resolution: 50 ... 250 ms




A directly cooled tube: The Siemens Vectron tube
(Photo courtesy by Siemens)

dkfz.



Detector Technology

Gd,0,S
7.44 g/cm?

g

Photo courtey 6f Siemens
Healthcare, Forchheim, Germany
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Images of a 32 cm Water Phantom

—

No water precorrection With water precorrection
(only accessible in service mode) (air =-1000 HU, water = 0 HU)




First Order

Beam Hardening Correction
(Cupping Correction, Water Precorrection)

- Assumes the object to consist of only one energy
dependency (one material)

« Often requires to know the spectral properties of all
components involved
— X-ray spectra
— Pre patient filters

— Attenuation properties of the assumed single material or shape and
position of a calibration object

— Absorption properties of detector




Empirical cupping correction: A first-order raw data precorrection
for cone-beam computed tomography

Marc KachelrieB,? Katia Sourbelle, and Willi A. Kalender
Institute of Medical Physics, University of Erlangen-Niirnberg, Henkestrafie 91,

D-91052 Erlangen Germany

(Received 5 December 2005; revised 13 February 2006; accepted for publication 21 February 2006;
published 19 April 2006)

We propose an empirical cupping correction (ECC) algorithm to correct for CT cupping artifacts
that are induced by nonlinearities in the projection data. The method is raw data based, empirical,
and requires neither knowledge of the x-ray spectrum nor of the attenuation coefficients. It aims at
linearizing the attenuation data using a precorrection function of polynomial form. The coefficients
of the polynomial are determined once using a calibration scan of a homogeneous phantom. Com-
puting the coefficients is done in image domain by fitting a series of basis images to a template
image. The template image is obtained directly from the uncorrected phantom image and no as-
sumptions on the phantom size or of its positioning are made. Raw data are precorrected by passing
them through the once-determined polynomial. As an example we demonstrate how ECC can be
used to perform water precorrection for an in vive micro-CT scanner (TomoScope 30 s, VAMP
GmbH, Erlangen, Germany). For this particular case, practical considerations regarding the defini-
tion of the template image are given. ECC strives to remove the cupping artifacts and to obtain
well-calibrated CT values. Although ECC is a first-order correction and cannot compete with
iterative higher-order beam hardening or scatter correction algorithms, our in vive mouse images
show a significant reduction of bone-induced artifacts as well. A combination of ECC with analyti-
cal techniques yielding a hybrid cupping correction method is possible and allows for channel-
dependent correction functions. © 2006 American Association of Physicists in Medicine.
[DOI: 10.1118/1.2188076]

Key words: flat-panel detector CT, C-arm CT. micro-CT. artifacts, image quality

I. INTRODUCTION know the calibration phantom shape, size, and position.
Therefore, it has significant advantages over the other exist-
ing approaches that actually rely on this information.

S g 0T o e) easureme 1SING 2

Due to beam polychromacity in CT, the energy dependence
of the attenuation coefficients, and scatter, the log-

M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006. dk z.



Motivation

 Measured projection value ¢
— Detected spectrum w(L, E)

¢(L)=—n [ dE w(L,E) o 1dL Ur. E)

— Scatter
— Normalization

- ldeal monochromatic projection value p

p(L)= [ dL u(r, Ey)

Determine a function P such that
p=P(L, q) corrects for the cupping.




Analytical Cupping Correction
 Know the detected spectrum
w(L,E) o< E I(L,E) (1—e 2 F% 1))

 Assume the object to be decomposed as
HU(r,E)= f(r)y(E)

such that

¢(L)=—In [dEw(L.E)e” PYH)

+ Invert to get p p(L) = jdL J(r)
p=P(L.q)




Empirical Cupping Correction (ECC)

- Series expansion of the
precorrection function

N N
p=P@)=).c,P (@)= cq"
n=0 n=0

- Go to image domain by
reconstructing q"

f,(r)=R"P(¢)=R7q".

 Find coefficients from

fr)=R"'p=R'P(q)=> c,f,(r)

M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.




ECC Template Image

[&?rwe) (f)—1()” =min  with f(r)=)"c,f,(r)

segment and
specify CT-values

S

Original image Template image Weight image
Ji(r) 1r) w(r)

M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.




Results: Water Phantom

Orig (Mean+4Sigma) ECC (Meant4Sigma)

M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.




Results: Mouse Scan

No correction (Mean+4Sigma)

M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006. dkfz.
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M. KachelrieB, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.




Higher Order
Beam Hardening Correction

« Always requires to add a priori knowledge about the
object
— Segmentation into regions of constant energy dependencies

« Often requires to know the spectral properties of all
components involved
— X-ray spectra
— Pre patient filters
— Attenuation properties of materials abundant in humans
— Absorption properties of detector




One Material
(needed for Water Precorrection)

Assumption: UE,r)=w(E)f(r)

g=R,f :—mjdEw(E)e_‘”(E)p
p=Rf=[dLf(r)

All clinical CT images are corrected wrt a single material.

M. KachelrieB, and W.A. Kalender, “Improving PET/CT attenuation correction with iterative CT beam
hardening correction,” IEEE Medical Imaging Conference Program, M04-5, October 2005.




Many Materials
(required for iterative BHC)

Assumption: | u(E,r) = Z%(E)gi(r) =w(E) -g(r)

g=R,g=—In jdEw(E)e_'/’(E)'p

p=Rg=|dLg(r)

For PET/CT attenuation correction we need to recover g, (r) forall
materials present. Then we can convert to E; = 511 keV as

H(E,,T) = ZWi(EO)gi(r) =y(E,) g(r)

Today’s scaling algorithms, in contrast, simply use g,(r)= f(r) s,(r).

M. KachelrieB, and W.A. Kalender, “Improving PET/CT attenuation correction with iterative CT beam
hardening correction,” IEEE Medical Imaging Conference Program, M04-5, October 2005.




Empirical beam hardening correction (EBHC) for CT

Yiannis Kyriakou, Esther Meyer, Daniel Prell, and Marc KachelrieB*
Institute of Medical Physics, University of Erlangen—Niirnberg, 91052 Erlangen, Germany

(Received 19 May 2010; revised 1 July 2010; accepted for publication 13 July 2010;
published 8 September 2010)

Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements
tend to be underestimated. Cupping and beam hardening artifacts become apparent in the recon-
structed CT images. If only one material such as water, for example, is present, these artifacts can
be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when
a mixture of materials such as water and bone, or water and bone and iodine is present, require an
iterative beam hardening correction where the image is segmented into different materials and those
are forward projected to obtain new rawdata. Typically, the forward projection must correctly model
the beam polychromaticity and account for all physical effects, including the energy dependence of
the assumed materials in the patient, the detector response, and others. We propose a new algorithm
that does not require any knowledge about spectra or attenuation coefficients and that does not need
to be calibrated. The proposed method corrects beam hardening in single energy CT data.
Methods: The only a priori knowledge entering EBHC is the segmentation of the object into
different materials. Materials other than water are segmented from the original image, e.g., by using
simple thresholding. Then, a (monochromatic) forward projection of these other materials is per-
formed. The measured rawdata and the forward projected material-specific rawdata are monomially
combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These
are then linearly combined and added to the original volume. The combination weights are deter-
mined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data
acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash,
Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (Tomo-
Scope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern C-arm CT
scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom,
small animal, and patient data were used to demonstrate the data and system independence of
EBHC.

Results: Although no physics apart from the initial segmentation procedure enter the correction
process, beam hardening artifacts were significantly reduced by EBHC. The image quality for
clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where
high scatter levels and calibration errors occur, the relative improvement was smaller.
Conclusions: The empirical beam hardening correction is an interesting alternative to conventional
iterative higher order beam hardening correction algorithms. It does not tend to over- or undercor-
rect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra
or on the type of material involved. Potentially, it can therefore be applied to any CT
image. © 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3477088]

Key words: Computed tomography (CT), beam hardening correction, x-ray, scatter

Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010. dkfz.



Empirical Beam Hardening
Correction (EBHC)

Requirements/Objectives

Empirical correction of higher order beam hardening
effects

No assumptions on attenuation coefficients, spectra,
detector responses or other properties of the scanner

Image-based and system-independent method

Clinical CT

Micro CT (rat head)

Overview of correction steps

Forward project segmented bone volume to obtain
artificial rawdata

Pass the artificial rawdata through basis functions
Reconstruct the basis functions

C-arm CT

Linearly combine the correction volumes and the
original volume using flathess maximization

Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




EBHC Details

- Decomposition into an effective water-equivalent
density f (r) of the object and into an effective energy
dependence ¥,(E) of a second material, e.g. bone

p(r, E) = fi(r)i(E) + fa(r)2(E)
= (fi(r) + fo(r)) 1 (E) + fo(r) (V2 (E) — 1 (E))

= [1(P)1(B) + fa(r)ia(B).
« Assuming water-precorrected data gives

, ) ‘,,,1(E)—p2’l,[€’2(E)

where p, and p, are the line integrals through
AGKEL NAG

Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




EBHC Details

- We solve for p,(r) using a series expansion
C11PoP2 M co2ps +

Rl R™

2 2
c c
= =
> >
S S
= =
g g
< <

CoWwso00

- Empirically find ¢,; and c,, to correct initial image by flathess
maximization

Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




EBHC for Clinical CT
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Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




EBHC for Micro CT
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Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




EBHC: Clinical CT vs.

Clinical CT FD-CT Clinical CT
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Y. Kyriakou, E. Meyer, D. Prell, and M. KachelrieB, “Empirical beam hardening
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.




Conclusions on Empirical Cupping
and Beam Hardening Corrections

« X-ray spectra need not necessarily be known
« Scatter is implicitly accounted for as well

« ECC and EBHC are robust methods that work well in
clinical CT and that also have been applied to some
iIndustrial situations.




Scatter Correction

Remove or prevent scattered radiation
(anti scatter grid, slit scan, large detector distance, ...)

Compute scatter to subtract it
(convolution-based, Monte Carlo-based, ...)

Measure scatter distribution and subtract it
(collimator shadow, beam blockers,
primary modulators, ...)

Literature:

E.-P. ROhrnschopf and K. Klingenbeck, “A general framework and review of scatter correction
methods in x—ray cone—beam computerized tomography. Part 1: Scatter compensation approaches,”
Med. Phys., vol. 38, pp. 4296—4311, July 2011.

E.-P. ROhrnschopf and K. Klingenbeck, “A general framework and review of scatter correction
methods in x—ray cone beam CT. Part 2: Scatter estimation approaches,” Med. Phys., vol. 38, pp.
5186-5199, Sept. 2011.




Basis Images EBHC + ESC

Beam hardening basis images’ Scatter basis images?
p :beam hardening-corrected projections [ . : scatter intensity
g

Do - water-precorrected projections of tissue IF  forward scatter intensity

: projections of metal
Py - proj K : scatter kernel

_ U
P(Pg:P,y) = ichpopm = I5(a,b,c)=1,(a)* K(b,c)

]
y
= Py TP, TCPyP,y, TC3P,, T ..

Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrie3, “Empirical beam hardening correction for CT”, MedPhys 37: 5179-5187, 2010.
°B. Ohnesorge et al., “Efficient object scatter correction algorithm for third and fourth generation CT scanners”, EuRad 9:563-569, 1999.




EBHSC: Scheme

N
=—argmin t__ (U —ZciBi)
=1

Cl"'CN l

E. Meyer, C. MaaB, M. Baer, R. Raupach, B. Schmidt, and M. KachelrieB, “Empirical Scatter Correction dkf
(ESC) “, IEEE Medical Imaging Conference Record 2010:2036-2041, November 2010. Z.




EBHSC: Results

Uncorrected image EBHSC image

Patient with bilateral hip prosthesis, Siemens Somatom Definition (C=100/W=1000).

E. Meyer, C. MaaB, M. Baer, R. Raupach, B. Schmidt, and M. KachelrieB, “Empirical Scatter Correction dkf
(ESC) “, IEEE Medical Imaging Conference Record 2010:2036-2041, November 2010. Z.




Primary Modulation-based

Scatter Estimation (PMSE)

« Idea: Insert a high frequency
modulation pattern between
the source and the object
scanned

Rationale: The primary
intensity is modulated. The
scatter is created in the
object and only consists of
low frequency components.

Method: Estimate Iovy ' " «———"Shifted primary
frequency primary without

scatter by Fourier filtering ‘ \
technlques Scatter + primary

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x-ray CT using primary modulation: f
Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573-1587, Dec. 2006. dk z.




Primary Modulation-based
Scatter Estimation (PMSE?)

« Advantages:
— Non-destructive measurement of the scatter distribution
— Works with high accuracy on laboratory setups

— Corrected projection data can be used for projective imaging
(fluoroscopy) or for tomographic reconstruction

 Drawbacks:

— Sensitive to non-linearities due to polychromaticity of x-rays. Ring
artifacts are introduced'. Can be resolved using ECCP>.

— Requires exact rectangular pattern on the detector. Very sensitive
to non-idealities of the projected modulation pattern (blurring,
distortion, manufacturing errors of the modulator). Can be resolved
using iPMSE3.

'H. Gao, L. Zhu, and R. Fahrig. Modulator design for x-ray scatter correction using primary modulation:
Material selection. Med. Phys. 37:4029-4037, 2010.
2R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrie3. Empirical cupping correction for CT
scanners with primary modulation (ECCP). Med. Phys. 39(2):825-831, February 2012.
3L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrie3, Robust primary modulation-based scatter
estimation for cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Primary Modulator
Introduces Beam Hardening

* The primary modulator introduces high frequency
variations of the incident x-ray spectrum.

* These variations show up as ring artifacts in the
reconstructed imagesi-2-3.

(0 HU, 500 HU)

Scan without modulator, Scan with modulator,
no scatter correction after PMSE correction

1Gao et al. MedPhys 37(2):934-946, 2010. 2Gao et al. Proc. SPIE 7622, 2010. 3Gao et al. MedPhys 37(8):4029-4037, 2010. dku.




Catphan Phantom

Measurement without Measurement with ECCP-corrected
Modulator Modulator

C=0HU, W =500 HU

ECCP coefficients obtained from the water phantom calibration scan.

R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. KachelrieB, “Empirical cupping correction
for CT scanners with primary modulation (ECCP),” Med. Phys. 39(2):825-831, February 2012.




Combined correction with
PMSE and ECCP

Measurement without PMSE+ECCP-corrected Slitscan without
Modulator modulator

C=0HU, W =500 HU

ECCP coefficients obtained from the PMSE-corrected
water phantom calibration scan.

R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. KachelrieB, “Empirical cupping correction
for CT scanners with primary modulation (ECCP),” Med. Phys. 39(2):825-831, February 2012.




Aim of IPMSE

Create a robust scatter estimation method which is
able to estimate the scatter distribution with high
accuracy using a modulator with an arbitrary high
frequency pattern.

atatate et at e tatate ettt nn--n:

Non-ideal modulato
(projection image of a (projection image of the
copper modulator) erbium modulator)

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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Modulation Process
in the Rawdata Domain

/ Primary intensity

 Measured data: cm = Mc, + ¢
\ Scatter intensity

Measured intensity Modulation pattern

« Solving for the .
primary intensity: c, =M (cm — cs)

. i est __ —1 est
Error of primary ot =M (cm — )

estimate:
e MG )

The modulation pattern remains visible Scatter estimate error
if the scatter estimate error is not zero.

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.




IPSME

Subjectto H - ¢, = 0 solve:
Clcs) = ||V ‘M_l(cm —¢s)|l1

Assumption:

In a sufficiently small and sufficiently
large sub image the constraint can be
satisfied by assuming c, = const.

SOlution - ;’ Measurement

Solve cost function for each possible sub
image separately.

Finally do:
c, = M '(cym — )

Scatter estimate

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.




Measured Intensity

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.




IPMSE Estimation

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.




Slitscan

Uncorrected

=
L
o
o
o
™
=
L
o

C/W

Sagittal

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.




Metal Artifact Reduction (MAR)
With linear interpolation (MAR1) ;;;% LS“

[1] W. A. Kalender, R. Hebel and J.
Ebersberger, “Reduction of CT artifacts
caused by metallic implants”,
Radiology, vol. 164, no. 2, pp. 576-577,
August 1987.

| —
With simple length-normalization (MAR2) T D%

[2] J. Miller and T. M. Buzug, “Spurious R -
structures created by interpolation- v %
based CT metal artifact reduction®, | g " de

SPIE Medical Imaging Proc., vol. 7258, .

no. 1, pp. 1Y1-1Y8, March 2009.
Our generalized normalization (NMAR)

[3] E. Meyer, F. Bergner, R. Raupach, and -
M. Kachelrie3. “Normalized metal
artifact reduction (NMAR) in computed
tomography”, IEEE Medical Imaging
Conference Record, M09-206, October
2009.
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Thresholding

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




Normalized MAR (NMAR)

Interpolation
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Normalized sinogram Interpol. & norm.

~

Normalization> Denormalization

t | >
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Thresholding

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.




Interpolation
| \/ v

Original sinogram Metal projections Corrected sinogram

N

} 1

Uncorrected image Metal image

'l
Thresholding

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.

dkfz.



Results and Comparison:
Patient Data

Uncorrected

Patient with hip implants, Sensation 16, 140 kV, (C=0/W=500)

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




Results and Comparison:

Patient Data
Uncorrected A=Y

\'D,ﬁ -~ \ )

Patient with hip implants, Sensation 16, 140 kV, (C=500/W=1500)

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




Results and Comparison:
Patient Data

Uncorrected MAR1

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top
and middle row: (C=100/W=750). Bottom row: (C=1000/W=4000)

SI E M E Ns Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




NMAR: Results

Uncorrected

A

o4

/

Bone removal (with scanner software), (C=40/W=500).

SI E M E Ns Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




NMAR: Results

Uncorrected

Patient with hip implant, Somatom Definition Flash, pitch 2.7.
Top and middle row: (C=0/W=500). Bottom row: (C=500/W=1500).

SI E M E NS Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Normalized metal artifact reduction dkf
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012. z.




FSMAR: Scheme

Uncorrected

Result
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ighpass-filtere L owpass-filtered
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SI E M E N S Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Frequency split metal artifact reduction dkf
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012. y 45




FSMAR: Results

Uncorrected MARH
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Patient with spine fixation, Somatom Definition, (C=100/W=1000)

SI E M E N s Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Frequency split metal artifact reduction dkf
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012. y 45




FSMAR: Results

Uncorrected MAR1
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Patient with spine fixation, Somatom Definition, (C=100/W=1000).

SI E M E N S Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Frequency split metal artifact reduction dkf
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012. y 45




FSMAR: Results

Uncorrected
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Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

SI E M E N S Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Frequency split metal artifact reduction dkf
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012. y 45




FSMAR: Results

Uncorrected
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Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

SI E M E N S Meyer, Raupach, Lell, Schmidt, and KachelrieB, “Frequency split metal artifact reduction dkf
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012. y 45




DECT Technology

* |In the clinic:
— Multiple scans at different spectra
— Dual source CT (DSCT), generations 2, and 3
— Fast tube voltage switching
— Dual layer sandwich detectors
— Split filter

 First prototypes:

— Photon counting detectors (two or more energy bins)

mid-range
high-end
high-end
high-end
mid-range

high-end?




DECT Technology

« DECT approaches in the clinic:
— Dual source DECT (Siemens)

dkfz.



DECT Technology

« DECT approaches in the clinic:
— Dual source DECT (Siemens)

— Fast tube voltage switching (GE)
GE Discovery CT750 HD

Tube voltage = ¢ iR

- e B : R 4
alternating \ ) I
>1000 times per \ [ Sy X-Ray Spectrum
second. Slow Motion 3 140 kv

80kv ——E'——““‘J + ' 2| 80ky

Time - Energy

dkfz.




DECT Technology

« DECT approaches in the clinic:
— Dual source DECT (Siemens)

— Fast tube voltage switching (GE)
GE Discovery CT750 HD

Tube voltage = ¢ iR

-

alternating \/ '
>1000 times per \ [ Sy X-Ray Spectrum

second. Riotion : 140 kv

140kV
SOKV = 2| 80ky

Time - Energy

dkfz.




DECT Technology

« DECT approaches in the clinic:
— Dual source DECT (Siemens)
— Fast tube voltage switching (GE)
— Dual layer (sandwich) detector (Philips)

Philips 1Qon




DECT Technology

« DECT approaches in the clinic:
— Dual source DECT (Siemens)
— Fast tube voltage switching (GE)
— Dual layer (sandwich) detector (Philips)
— Split filter (Siemens)

SIEMENS




DECT Technology

DECT approaches in the clinic:
— Dual source DECT (Siemens)
— Fast tube voltage switching (GE)
— Dual layer (sandwich) detector (Philips)
— Split filter (Siemens)

* First prototype systems \ =

— Photon counting detector, multiple energy bins \Q )




Examples

(Slide Courtesy of Siemens Healthcare)

Single DECT
Scan

5 Ned i diolpgischg

-ss$D-1.3} 7.&},7300? 4 soﬁom gmﬁ

ay @ «|cT z%.
T4 TS

DE bone removal

Virtual non-contrast
and lodine image

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander University Erlangen-Niirnberg




DECT Today: Widely Available via DSCT

(Slide Courtesy of Siemens Healthcare)

= “Spectroscopy“: more specific tissue characterization
- Detection and visualization of calcium, iron, uric acid,

__Kidney stones __
; 4”‘;-":.;..(:';".:'5.‘" " @" 3

e
— ( - B | .
Courtesy of Klinikum GroBhadern, LMU Miinchen




DECT Today: Widely Available via DSCT

(Slide Courtesy of Siemens Healthcare)

New approach: Detection, visualization and quantification of iodine
-> Visualization of perfusion defects in the lung parenchyma

\ ., A

‘ , _ .' Standard image +
Standard image ¥ lodirie image iodine overlay

Courtesy of Hopital Calmette, Lille, France

F




Image-based Techniques
Mixed Image (Linear)

Original low spectrum image Original high spectrum image

C/W: 500/3000 HU




Image-based Techniques
Mixed Image (Linear)

Resulting mixed
Image from low to
high-energy image

C/W: 500/3000 HU




DECT
and Pseudo Monochromatic Imaging

Pseudo monochromatic imaging is a linear combination
_of DECT £ and f;: fo=(1—0a)fL+afu

100 KkV, =0, E =67 keV 3;00kV 0{0@:‘5 67 keV

A
DECT spectra -w ) , 0
L fo ! Y |
\ﬂ- 3 //
*& ) in HU ~\ -, e
(40/400) HRE==(0/800).
oA E)

140 kV, =1, E = 93 keV 3)40 KV, aTQWZ'EGQS_keV

(40/400) _  EE07800).
20 40 66 80 100 120 140 160 180 cSilEE e 1:59*@?{ gorey
E / keV \ b o

‘" (40/400) —_




Monochromatic Imaging

« Pseudo monochromatic imaging f. = (1 —a) f. +afu
— Image-based postprocessing
— Provided in clinical DECT scanners

 Virtual monochromatic imaging g¢.=(1—-a)grL +agn
— Rawdata-based preprocessing
— Constraint on consistent rawdata

 True monochromatic imaging
— Would require monochromatic x-rays — not applicable here

—1In / dE wr,(E) e—Pwiw(E) — peps(E)
—In / dE wy(E) e PWHEW (E) — peus(E)




Series Expansion
« Series expansion of the polychromatic attenuation:

q; = —1n/dE w;(E) e~ PWhw(E) — pepB(E) _ S

flinear f nonlinear

ko1
Ll CikIPWPB

-
Ar -
\

s
(0/200) g 9'4

(0/200)

i
")

‘ (0/200) (0/200) 1% (0/200)




also reduces . . . works well in
scatter  ———> pseudo monochromatic  virtual monochromatic scatter-free

artifacts image-based processing rawdata-based processing situations
CNR =4.3 j CNR =3.9

f=f,
(E = 67 keV)

CNR =614 CNR. =433

maximum CNR [%398 L o =0.

(E = 93 keV)

fier |- : C =40 HU,
(E = 221 keV) __ W =400 HU




Patient Data Set — Pseudo Monochromatic Imaging
= -723 mm = -792 mm

o(E)
fi=Ff /BN R o ¥
(E = 67 keV) 8 \ PR L d _ G 3 LN . l 20 40 60 80 100120140160180

E/ keV

o(E)
f.=f SIS A A A,
H= 14

(E =93 keV) N " e Pl F i W -14 20 40 §0 80 100120140160180

E/ keV

f,

(E =154 keV) - - §les , L £ | -17 20 40 §0 80100120140160180

E/ keV

f2.00 e \ S T e - G \
(E = --- keV £ \ P = | 13 20 40 60 80 100120140160180

E/ keV

C=0HU, W=800HU




‘Original DEMAR IMAR (FSNMAR)'

’ '
&

? ﬁu

E 128 keV b

Patient 1

Patient 2
100 kV /140 kV Sn 100 kV / 140 kV Sn

not applicable since this is
a single energy CT scan.

(o0
b
e
Qo
-— O
O -
o

Tlterative metal artifact reduction (IMAR) is the Siemens product implementation of FSNMAR. dkfz.




Conclusion

 Pseudo monochromatic imaging
— cannot completely remove metal artifacts,
— can sometimes reduce metal artifacts,
— reduces CNR if used for metal artifact reduction.

 Rawdata-based methods should be preferred.

 The additional information available in DECT
should be used for spectral imaging rather than
for artifact reduction.




Image-Based DECT: Beyond
Pseudo-Monochromatic Imaging?

 Pseudo monochromatic images may be used to
reduce BH and metal artifacts. But there is only one
pseudo monochromatic energy that minimizes the
beam hardening and scatter artifacts.

At this energy, the CNRD is low.

- Aim: find an image-based approach that yields high
CNRD and low artifacts.

100 kV 140 kV, Sn 118 keV




EDEBHC

- Extend the simple a~blending by higher order terms:

fepeBuc (7)) = (1 — a) fio(r) + afor(r) + Z Caij [ij (T)

with the basis images
fig = X Lol
being the reconstruction of rawdata monomials.

* For a given value of «zchoose the c_; to minimize the
artifact content in the resulting EDEéHC image.

 The o~value is constant during optimization and
defines the desired contrast situation.




EDEBHC Cost Function

* Artifacts in general, B T e e
and beam hardening
and scatter artifacts
in particular, broaden
the histogram peaks
and thus increase the
entropy of the image.

Counted Voxel

Thus, the image entropy H

Zhb FInhy(f

can be used as the EDEBHC cost function:

Cc., = arg mgnH((l — ) fio + afor + Z Cijfij)
]




EDEBHC Basis Images

Patient Measurement on a Siemens Definition Flash CT System

fii = X~} o

Only basis images without mixed terms are shown here.

C=0HU, W=3000 HU




EDEBHC Results £ =

Simulation of an Abdomen Phantom

Pseudo-monochromatic Image EDEBHC Image
a=1.6, CNR =5.84 a=1.6, CNR = 7.58

1 — «)fio + afor
c20 f20 + coz2fo2 + ¢30 130

co3 foz + €40 fa0 + coa foa

C=0HU, W=200 HU




EDEBHC Results

Patient Measurement

o=1.0

o
c
o
=
o}
©
=
o
N
(o

EDEBHC

C=0HU; W=1000 HU




Conclusion

« EDEBHC provides images with reduced beam
hardening for an infinite number of contrast
situations.

- Because EDEBHC uses both initial images (f_ , and
f;) optimal for each chosen o~value, the CNR is
increased compared to the same contrast situation in
pseudo-monochromatic imaging.




Thank You!

(CCUT.'L The 4t International Conference on
Image Formation in X-Ray Computed Tomography

July 18 — July 22, 2016, Bamberg, Germany
www.ct-meeting.org

Conference Chair
Marc Kachelrie®, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.
Parts of the reconstruction software were provided by
RayConStruct® GmbH, Niirnberg, Germany.




