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In-plane resolution: 0.4 … 0.7 mm

Nominal slice thickness: S = 0.5 … 1.5 mm

Tube (max. values): 120 kW, 150 kV, 1300 mA

Effective tube current: mAseff = 10 mAs … 1000 mAs

Rotation time: Trot = 0.25 … 0.5 s

Simultaneously acquired slices: M = 16 … 320

Table increment per rotation: d = 1 … 183 mm

Scan speed: up to 73 cm/s

Temporal resolution: 50 … 250 ms

Philips iMRC Siemens VectronGE Performix HDw

GE Revolution CTCanon Aquilion ONE Vision Philips IQon Spectral CT Siemens Somatom Force

Canon Megacool Vi



Very Fast Scanning (Somatom Force)

Axial slices, C = 0 HU, W = 1500 HU

Procedure: 
Transcatheter aortic 

valve implantation (TAVI)

Patient age: 80 years

Tube voltage: 80 kV
Current: 340 ref mAs/rot

Rotation time: 0.25 s
Pitch: 3.2

Slice thickness: 0.75 mm
Scan length: 557 mm

Scan time: 0.76 s
Scan speed: 737 mm/s

Kernel : B40
Recon: ADMIRE 3

CTDIvol: 2.7 mGy
DLP: 162 mGy⋅cm

Effective dose: 2.3 mSv

Volume renderingCase information

56 cm
0.76 s



6

Data courtesy of Schleifring GmbH, Fürstenfeldbruck, Germany
and of rsna2011.rsna.org/exbData/1678/docs/Gantry_Subsystem.pdf

air bearing

direct drive resolver

non-contacting
power transmission

non-contacting
data transmission
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Courtesy of Philips Medical Systems GmbH, Hamburg, Germany
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Gd2O2S
7.44 g/cm3

Photo courtesy of Siemens 
Healthcare, Forchheim, Germany

Detector Technology
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“Stellar detector”, modular and 2D tilable, focussed 2D anti scatter grid
(Photo courtesy by Siemens)
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Courtesy of University Hospital Mannheim

Somatom Force: 
Ultra Low Dose Lung Imaging

• Atypical pneumonia in inspiration and expiration

• Turbo Flash mode, 737 mm/s, 100 kV Sn

• DLP = 7 mGy⋅cm ≈ 0.1 mSv per scan



Courtesy of Armed Police Forces Center/ Beijing, China

No sedation

Child, 12 months

Temporal resolution: 75 ms

Collimation: 2·64×0.6 mm

Spatial resolution: 0.6 mm

Scan time: 0.23 s

Scan length: 78 mm

Rotation time: 0.28 s

80 kV, 36 mAs / rotation

Flash Spiral

Eff. dose: 0.05 mSv
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Photon Counting
is the 

New Detector Era!
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Gd2O2S
7.44 g/cm3

CdTe
5.85 g/cm3

2500 ns FWHM 25 ns FWHM
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i.e. max O(40·106) cpsi.e. max O(40·103) cps

Requirements for CT: up to 109 x-ray photon counts per second per mm2.
Hence, photon counting only achievable for direct converters.

-

Indirect Conversion (Today)

t

E1

E3

E4

pile up 
problem

t

E2

Direct Conversion (Future)
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Diagnostic CT (Conventional Detector) 
of a Low Contrast Phantom

Photon Counting Detector CT 
of a Low Contrast Phantom

Photon
Counting Detector

Phantom

C = 0 HU, W = 80 HU 

Same dose. At same spatial resolution 
(MTF) better image quality.

Diagnostic routine head protocol. 
34 mGy CTDIvol.

Mean: -21.1 HU
StdDev: 5.1 HU

Mean: -0.8 HU
StdDev: 5.3 HU

Mean: -9.1 HU
StdDev: 4.82 HU

Mean: -18.6 HU
StdDev: 2.5 HU

Mean: -0.2 HU
StdDev: 2.6 HU

Mean: -6.6 HU
StdDev: 2.5 HU

EI PC
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Dark Image of Photon Counter 
Shows Background Radiation

18 frames, 5 min integration time per frame

Santis: 1 mm CdTe, 150 µm pixel size, 4 thresholds.

C/W = 3 cnts/8 cnts

C/W = 1 cnts/2 cntsC/W = 0 a.u./70 a.u.

C/W = 30 a.u./450 a.u.
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Photon Counting (Dectris Santis)Energy Integrating (Dexela)

No dark current.
No readout noise. 

Single events visible!

Dark current dominates.
Readout noise only. 

Single events hidden!
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No Electronic Noise!

• Photon counting detectors have no electronic noise.

• Extreme low dose situations will benefit
– Pediadric scans at even lower dose

– Obese patients with less noise

– …
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Energy Integrating
(Detected Spectra at 100 kV and 140 kV)

0 keV 33 keV
=

iodine
k-edge

140 keV100 keV

Spectra as seen after having passed a 32 cm water layer.
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Photon Counting 
(Detected Spectra at 100 kV and 140 kV)

0 keV 33 keV
=

iodine
k-edge

140 keV100 keV

Spectra as seen after having passed a 32 cm water layer.
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Expected Value and Variance

• Transmitted number of photons N:

• Poisson distribution:

• Detected signal S with sensitivity s(E):

• Expected value and variance of the signal S:

• Detector sensitivity: PC               , but EI ! 

PC = photon counting detector, EI = energy integrating detector
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Swank Factor
• The Swank factor measures the relative SNR2, and thus the relative 

dose efficiency between photon counting (PC) and energy 
integrating (EI). 

• PC always has the highest SNR.

water 
thickness 

PC

EI 90 kV + 0.6 mm Sn

EI 90 kV
EI 150 kV + 0.6 mm Sn

EI 150 kV

100%

90%

SF

100 mm 300 mm 500 mm

due to Schwarz‘ inequality
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Photon Counting used to Maximize CNR

• With PC energy bins can be weighted individually.

• To optimize the CNR the optimal bin weighting factor 
is given by (weighting after log):

• The resulting CNR is

• At the optimum this evaluates to
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Energy Integrating vs. Photon Counting
with 1 bin from 20 to 140 keV

CNR = 2.95 

Energy Integrating Photon CountingPC minus EI

CNR = 2.11

40% CNR improvement or
49% dose reduction achievable
due to improved Swank factor 

and more weight on low energies 
(iodine contrast benefits). 20 140
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Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV
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Energy Integrating vs. Photon Counting
with 4 bins from 20 to 140 keV

CNR = 4.19 

Energy Integrating Photon CountingPC minus EI

CNR = 2.11

99% CNR improvement or
75% dose reduction achievable 
due to improved Swank factor 

and optimized energy weighting.
20 140

#
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Energy / keV

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV
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CdTe
5.85 g/cm3

-
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Spatial Resolution

• Small electrodes are 
necessary to avoid pile-up.

• High bias voltages (around 
300 V) limit charge 
diffusion and thus blurring 
in the non-structured 
semiconductor layer.

• Thus, higher spatial 
resolution is achievable.
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To Bin or not to Bin?
(the continuous view)

• We have                                     and                                   .

• From Rayleigh‘s theorem we find noise is

• Compare small (A) with large (B) detector pixels: 

• We have                           and thus                 . 

• This means that a desired PSF/MTF is often best 
achieved with smaller detectors.

A:

B:

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005
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To Bin or not to Bin?
(the discrete view)

• Let detector B be the 2-binned version of detector A:

• Assume LI to be used to find in-between pixel values.  
Wlog we may then consider B to be upsampled with 
mid-point interpolation to the pixel size of detector A:

• To obtain the same PSF/MTF with the unbinned detector 
we need to convolve A with

• Noise propagation yields 20% more noise (variance) for 
the binned detector:

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005
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To Bin or not to Bin
Macro Mode Sharp Mode

D
4
0
f

S
8
0
f

±12 HU±18 HU

1 cm

Images taken at Somatom CounT at the DKFZ by Sawall, Kachelrieß et al. C = - 50 HU, W = 1900 HU
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“However, when comparing with standard resolution data at 
same in-plane resolution and slice thickness, the PCD 0.25 

mm detector mode showed 19% less image noise in 
phantom, animal, and human scans.”  

Pourmorteza et al. Dose Efficiency of Quarter-Millimeter Photon-Counting Computed 
Tomography: First-in-Human Results. Invest. Radiol. 53(6), 2018.

Leng et al. 150 µm Spatial Resolution Using Photon-Counting Detector
Computed Tomography Technology. Invest. Radiol. 53(11), 2018

Antropomorphic head phantom

Animal

CounT Std CounT HighRes

CounT Std CounT HighRes
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12 12 12 12

12 12 1212

12 12 12 12

12 12 1212

12 34 12 34

12 34 1234

12 34 12 34

12 34 1234

12 12 12 12

12 12 1212

12 12 12 12

12 12 1212

Macro Mode
1×2 readouts

16 mm z-coverage

Chess Mode
2×2 readouts

16 mm z-coverage

Sharp Mode
5×1 readouts

12 mm z-coverage

UHR Mode
4×2 readouts

8 mm z-coverage

2 2 2 2

2 2 22

2 2 2 2

2 2 22

1 1 1 1

1 1 11

1 1 1 1

1 1 11

Readout Modes of the Siemens CounT

No FFS on thread B (photon counting detector). 
4×4 subpixels of 225 µm size = 0.9 mm pixels (0.5 mm at isocenter).

The whole detector consists of 128×1920 subpixels = 32×480 macro pixels.



Ultra-High Resolution on Demand

Energy Integrating CT
(Somatom Flash)

Photon Counting CT
(Somatom CounT. UHR-Mode)

Courtesy of Cynthia McCollough, Mayo Clinic, Rochester, USA.



Iodine imageCalcium image Gadolinium image

CT-Image

Ca-Gd-I Decomposition

Chess pattern mode
140 kV, 20/35/50/65 keV
C = 0 HU, W = 1200 HU

I

fatGd

Ca

Courtesy of Siemens Healthcare

MECT
12 34 12 34

12 34 1234

12 34 12 34

12 34 1234



Dual Energy whole body CTA: 100/140 Sn kV @ 0.6 mm

Courtesy of Friedrich-Alexander University Erlangen-Nürnberg

Single DECT 
scan

DE bone removal

Virtual non-contrast 
and iodine image

DECT Examples
(Slide Courtesy of Siemens Healthcare)



DECT Examples
(Slide Courtesy of Siemens Healthcare)

� “Spectroscopy“: more specific tissue characterization
� Detection and visualization of calcium, iron, uric acid, …..

Kidney stones

Calcium-oxalate-stone

Uric acid-stone

Different 
therapy options!

Courtesy of Klinikum Großhadern, LMU München



EI (Definition Flash) PC (CounT) PC Virtual Non-Contrast

PC Iodine Map PC Merged

Courtesy of National Institutes of Health, Berthesda, USA  

Pourmorteza A et al., Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience. Radiology. 2016 Apr;279(1):239-45

First Peer Reviewed Publication on 
CounT from NIH February 2016
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Potential Advantages
of Photon Counting Detectors in CT

• Higher spatial resolution due to
– smaller pixels

– lower cross-talk between pixels

• Lower dose/noise due to
– energy bin weighting

– no electronic noise

– Swank factor = 1

– smaller pixels

• Spectral information on demand
– single energy

– dual energy

– multiple energy

– virtual monochromatic

– K-edge imaging

– … 
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Motion Modelling
is the new 

Reconstruction Era!



47

Siemens Somatom Force DSCT

Varian True Beam CBCT

CT is much 
faster than 
one motion 

cycle!

CBCT is much 
slower than 
one motion 

cycle!
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Motion in Cardiac CT

• In cardiac CT, the imaging of small and fast 
moving vessels places high demands on 
the spatial and temporal resolution of the 
reconstruction.

• Mean displacements of �	 �
�
���

�
	 �̅ �

	
�
�

�
	ms	50

��

�
� 6.25	mm		are possible (RCA 

mean velocity measurements[1,2,3,4]).      

• Standard FDK-based cardiac reconstruction
might have an insufficient temporal 
resolution introducing strong motion 
artifacts. 

[1] Husmann et al. Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate -
Implications for CT Image Reconstruction. Radiology, Vol. 245, Nov 2007.
[2] Shechter et al. Displacement and Velocity of the Coronary Arteries: Cardiac and 
Respiratory Motion. IEEE Trans Med Imaging, 25(3): 369-375, Mar 2006
[3] Vembar et al. A dynamic approach to identifying desired physiological phases for 
cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.
[4] Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-
beam CT. Radiology, Vol. 216, Aug 2000.
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PAMoCo
Generate 2K+1 Partial Angle Reconstructions

ROI

Initial segmented stack volume

Subdivide the projection data 
into 2K + 1 overlapping sectors

0° 180°

J. Hahn, M. Kachelrieß et al. Motion compensation in the region of the coronary arteries based on 
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017.
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ROI

Initial segmented stack volume

Subdivide the projection data 
into 2K + 1 overlapping sectors

k = 0

Partial angle reconstructions

FWHM = K = 12

PAMoCo
Generate 2K+1 Partial Angle Reconstructions

0° 180°

J. Hahn, M. Kachelrieß et al. Motion compensation in the region of the coronary arteries based on 
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017.
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Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

Slice 31

sagittal view
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Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

curved MPRs of the RCA
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Stack 1

P
A

M
o

C
o

Slice 27

F
B

P

Slice 34 Slice 154

�� = 70 bpm, c = 50%,
C = 400 HU, W = 1500 HU

Patient 2
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FBP PAMoCo

curved MPRs  created with syngo.via

�� = 70 bpm, c = 50%,
C = 400 HU, W = 1500 HU

stack borders

Patient 2
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Stack 1

P
A

M
o

C
o

Slice 39

F
B

P

Slice 50 Slice 61

strong 
motion artifacts

�� = 69 bpm, c = 50%,
C = 400 HU, W = 1500 HU

Patient 3
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Motion in CBCT

Detector
kV Source

Linear Accelerator

Gantry
Rotation
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4D CBCT Scan 
with Retrospective Gating

Measured projections
assigned to one phase bin

Angular spacing of 
projection bins

Acquisition angle

100 %

0 %

50 %

Amplitude

Time
Projection angle

0 %50 % 0 %50 % 0 %50 % 0 %50 % 0 %50 %

End-Inhale

End-Exhale

Without gating (3D): 
Motion artifacts

With gating (4D): 
Sparse-view artifacts
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• Motion estimation via 
standard 3D-3D registration

• Has to be repeated for each
reconstructed phase

• Streak artifacts from gated reconstructions propagate 
into sMoCo results

4D gated CBCT

A Standard Motion Estimation and 
Compensation Approach (sMoCo)

sMoCo

Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” 
Med. Phys. 51(9), 3688–3695 (2007).
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• Motion estimation only between adjacent phases 

• Incorporate additional knowledge
– A priori knowledge of quasi periodic breathing pattern

– Non-cyclic motion is penalized

– Error propagation due to concatenation is reduced

The Cyclic Motion Estimation and 
Compensation Approach (cMoCo)

Displacement curve
of a fictitious pixel
over complete 
respiratory cycle

w/o temporal constraints

with temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-
compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012.
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Artifact Model-Based MoCo (aMoCo)

Segmented Image3D CBCT

4D gated CBCT 4D Artifact Images

Virtual rawdata:Measured data:

Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific 
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.
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Patient Data – Results

sMoCo
Standard Motion 
Compensation

3D CBCT
Standard

4D gated CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

C = -200 HU,  W = 1400 HU, displayed with 30 rpm.
Patient data provided by Memorial Sloan–Kettering Cancer Center, New York, NY.
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Data displayed as:

Heart: 280 bpm

Lung: 150 rpm

Mouse with 150 rpm and 280 bpm.
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Data displayed as:

Heart: 180 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 90 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 0 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Mouse with 180 rpm and 240 bpm.

Data displayed as:

Heart: 90 bpm

Lung: 0 rpm
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

respiratory

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

respiratory

c
a
rd

ia
c

1

2

3

4

5

6

7

8

9

10

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

respiratory

c
a
rd

ia
c

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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respiratory

c
a
rd

ia
c

5D Motion Compensation

1

2

3

4

6

7

8

9

10

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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Motion Compensation …
• will significantly improve cardiac CT

• may lead to new CBCT applications, 
in particular in

– interventional imaging

– imaging  for radiation therapy 

• MoCo also works for 4D and 5D PET, MR and 
PET/MR:

3D PET
motion average

5D double-gated PET
r = 1, c-loop

5D MoCo PET
r = 1, c-loop

5D MoCo MR
r = 1, c-loop

0

SUV

7

0

SUV

7

0

SUV

7

total PET/MR acquisition time: 5 min
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Machine Learning
is the 

New Era a.e.*

*Examples were shown at this BASP workshop.
A nice CT example was shown Monday afternoon by Ricardo Otazo.
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Limited Angle Example

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. 
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.

GT FBP (150°) CNN
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MAR Example
• Deep CNN-driven patch-based combination of the 

advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method

NMAR and FSNMAR:

E. Meyer, M. Kachelrieß. Normalized metal artifact 
reduction (NMAR) in computed tomography. Med. Phys. 
37(10):5482-5493, Oct. 2010.   

E. Meyer, M. Kachelrieß. Frequency split metal artifact 
reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, 
April 2012.
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Sparse View Reconstruction Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Kachelrieß, et al. A U-Nets Cascade for Sparse View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Noise Removal Example

• Architecture based on state-of-the art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Denoised low dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Denoised full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Scatter

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression

• Anti-scatter grids

• Collimators

• …

Scatter estimation

• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 12000 flat detector projection 
using data of different heads.

• Simulate different tube voltages.
• Splitting into 80% training and 20% 

validation data.
• Optimize weights of the CNN to reproduce 

the Monte Carlo scatter estimates:

• Training on a GeForce GTX 1080 for
80 epochs.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)
Primary 
intensity

(Kernel – GT) 
/ GT 

(Hybrid - GT)
/ GT

(DSE – GT)    
/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data
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J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data
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J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



103

Truncated DSE

FOM

FOM

GT uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018.

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.
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Conclusions on DSE

• DSE needs about 20 ms per projection. It is a fast and 
accurate alternative to Monte Carlo (MC) simulations.

• DSE outperforms kernel-based approaches in terms 
of accuracy and speed.

• Interesting observations
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE cannot accurately estimate scatter from a primary only image.

– DSE may thus outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.
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Deep Dose Estimation (DDE)

C = 0 %, W = 30 %

DDE prediction Relative ErrorMC ground truth

Photo effect doseCT image

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation
using a deep convolutional neural network. Proc. IEEE MIC 2018.

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 GPU

DDE training took 30 h for 200 epochs, 
720 samples, 48 slices per sample
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Conclusions on Deep CT

• Machine learning will play a significant role
in CT image formation.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers may ensure that the information that is 
made up is consistent with the measured data.

– …



Thank You!

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


