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Abstract—High spatial resolution and large field of measure-
ment are often contradictory demands, especially in x–ray cone–
beam CT. On the one hand the number of detector elements
are limited to typically 1024 × 1024 to 4096 × 4096. On the
other hand CT requires to completely cover the lateral field of
measurement (FOM) with the detector. If the number of detector
elements in the lateral direction is called M and the diameter
of the field of measurement is D the spatial resolution that can
be achieved is in the order of D/M .

Zooming into an object by a factor of 10, say, which can be
done by decreasing the distance of the focal spot to the isocenter
by the same factor, however yields truncated projections. We
developed and implemented three methods that use a priori
information from a low resolution overview scan to compensate
for the data missing in the high resolution scan. These are
the data completion, the data filtering, and the data weighting
method. Thereby we were aiming at a robust and efficient solution
with high image quality and high computational performance.

I. INTRODUCTION

A
IMING at high spatial resolution in objects with a large

transversal diameter requires to challenge the problem

of transversal data truncation. For example the specific case

we are interested in are objects fitting into a DL = 60 mm

diameter field of measurement (FOM) that shall be scanned

with a circular cone–beam CT scanner whose flat detector

consists of 2000×2000 elements. A standard scan would allow

us to achieve a spatial resolution of roughly 30 µm assuming

the focal spot size to be small enough. However, we are aiming

at high–resolution imaging a DH = 6 mm diameter region of

interest, the ROI, with roughly 3 µm spatial resolution. To

zoom into the object and increase the scanner’s magnification

by a factor of 10 the distance of the focal spot to the isocenter

can be reduced by the same factor, for example. The projection

data pH of this high resolution scan are, however, truncated

in the lateral direction. To compensate for the information

missing in the high resolution scan we use the projection data

pL of the standard or overview scan, which we will refer to

as the low resolution scan in the following.

For some objects or scanner geometries, and for large zoom

factors, it may happen that the x–ray source or the detector

would collide with the object during the high resolution circle

scan. To workaround this problem one could use object–

dependent non–circular trajectories, as we did propose in

reference [1] several years ago. Due to practical reasons

and due to the scanner design constraints we are, however,

restricted to certain scan trajectories (in our case circle scans

or spiral scans). To avoid collision we can neither acquire a

full 360◦ data set nor even a 180◦ data set, in general. Hence
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Fig. 1. State–of–the–art dimensional CT scanner used for our studies. The
scanner is capable of CT rasterization and of ROI tomography. It acquires in
circular and spiral mode.

it may happen that the high resolution scan is a limited angle

scan that further suffers from lateral data truncation.

The literature describes several methods to do region–of–

interest CT, which means to perform reconstruction from

truncated data. All methods deal with the truncation problem

and do not allow for a limited angle high resolution scan.

All practical solutions described make use of the low

resolution data pL to complete the data missing in pH. This is

either done in the rawdata domain itself, e.g. by rebinning, or

it is done by reconstructing the low resolution data to obtain a

low resolution volume fL which then can be forward projected

using the geometry of the high resolution scan to provide

rawdata that completes pH [2], [3], [4], [5], [6], [7].

Further on, there are numerous methods that seek recon-

structing from the high resolution data only without having

low resolution overview scans available. Those are either of

truncation–correction type with some kind of extrapolation

designed for diagnostic purposes which yield less quantitative

results [8], [9], [10], [11], [12], [13] or they are mathematical

tweaks including some approximation or highly restrictive a

priori assumptions [14], [15], [16]. A promising new interior

tomography approach is based on compressed sensing which,

however, requires long reconstruction times and the assump-

tion of piecewise constant objects [17], [18], [19]. Due to

these undesired properties these methods are considered to

be impractical for our purposes and therefore not within the

scope of this paper.

In principle, the first class of algorithms, that makes full

use of the low resolution overview scan, provides adequate

image quality for our purposes. However, one will run into
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significant performance problems whenever the focal spot

trajectory of the high resolution scan approaches the convex

hull of the object. In this case the fan angle of the completed

high resolution scan approaches 180◦ and a very large number

of additional detector channels would be needed to complete

the truncated region of the high resolution scan.

While one can certainly sidestep those issues, e.g. by using

a virtual curved detector in place of a flat detector or by

performing the forward projections on a sparse grid instead

of using the high resolution grid, we propose two simple

rawdata–based methods that require reconstructions of pL but

that do not require forward projections at all. It should be noted

that our methods can easily be combined with the possibility

of laterally shifting the detector to increase the object coverage

or the spatial resolution by another factor of two [20], [21],

[22], [23]. In this study, however, we did not make use of this

option and only deal with data from non–shifted detectors.

II. MATERIALS AND METHODS

We discuss the reconstruction of cone–beam CT data of the

form

p(α, ϑ, γ) =

∞
∫

0

dλ f(s + λΘ)

with s = s(α) being the source position at time (or angle) α

and

Θ =





− sinϑ cos γ

cosϑ cos γ

sin γ





being the direction vector of a ray emerging at s(α) in the

direction specified by the angles ϑ and γ. The rawdata are

denoted as p(α, ϑ, γ) and the object to be reconstructed is

f(r). Due to the limited detector size we will conduct two

scans of the above type. One overview scan which covers the

complete object and thereby results in low resolution data and

one high resolution scan that covers only an ROI of the object.

We use the subscripts L and H to distinguish between both

scans.

Aiming at Feldkamp–type approximate image reconstruc-

tion we assume the source trajectory to approximately lie in

a plane parallel to the x–y–plane and we assume the rotation

axis to be parallel to the z–axis. Note that even if the scanner

is performing exact circle scans the rotation axes of the low

resolution overview scan and the high resolution scan do not

necessarily coincide because the rotation center of the high

resolution scan is determined by the position and size of the

ROI.

Since we perform approximate and Feldkamp–type image

reconstruction the angle γ of the ray is used for length

correction only. It does not play a role in the data consistency

and weighting criteria discussed below. Therefore we may

safely drop γ in the following and restrict ourselves to in–

plane considerations, i.e. to the two dimensions x and y.

To achieve data consistency and to define appropriate

weighting functions it is necessary to parameterize a ray by

its angle ϑ and its distance ξ with respect to the origin of the

coordinate system. While ϑ is already well defined we obtain

ξ as a function of s and ϑ as

ξ = s · ϑ = sx cosϑ + sy sin ϑ

where we defined

ϑ =

(

cosϑ

sin ϑ

)

.

The ray specified by ϑ and ξ is the line

x cos ϑ + y sinϑ = ξ.

Image reconstruction can be performed if the data are

complete and if data redundancies are properly normalized by

defining a weighting function w(ϑ, ξ) that is zero wherever

rays are missing and that fulfills
∑

k

w(ϑ + kπ, (−)kξ) = 1, (1)

as discussed in reference [23].

Although the methods presented work for general focal

spot trajectories the CT scan modi we have in mind rather

perform approximate circular scans. Restricting ourselves to

such trajectories later allows us to formulate explicit equations

for the weighting functions, which is more convenient for the

reader. Therefore we introduce the circle trajectories

sL(α) =





RFL sinα

−RFL cosα

0



 and sH(α) =





RFH sin α

−RFH cosα

0



 + o

with RF denoting the radii of the low and the high resolution

scan trajectories, respectively, and with o being the isocenter

of the high resolution scan. We make use of these when

defining the weight functions below.

In total we compare three different methods to perform

ROI tomography when sufficient overview data are present:

the data completion method which is in wide use already, the

data filtering method, and the data weighting method. To our

knowledge, the last two methods are new.

A. Data Completion Method

The classical data completion methods perform a forward

projection of a low resolution overview volume fL to complete

data missing in the high resolution scan. While this is typically

done to complete truncated data the same procedure could be

used to solve the limited angle problem. As mentioned above

the data completion may suffer from low performance and

require a significant amount of memory.

To become more formal let us introduce some notation. Let

XL denote the x–ray transform corresponding to the overview

scan and let fL = X
−1

L pL be the said overview volume

reconstructed from the measured low resolution data pL. Let

XH = XM + XU be a decomposition of the high resolution

x–ray transform into rays that have beem measured and those

that are unmeasured. The high resolution projection data are

denoted as pH which we assume to be zero for all unmeasured

rays, i.e. in the truncated region and in the regions where the

projection angles are missing.

Using this notation the data completion method is given by

the equation

fH = X
−1

H (pH + XUfL). (2)
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B. Data Filtering Method

Equation (2) is equivalent to

fH = fL + X
−1

H (pH − XMfL)

because we have fL = X
−1

H (XUfL+XMfL) due to the linearity
of the x–ray transform. The latter equation, however, has a

different interpretation. It implies that the rawdata obtained

by forward projection of the overview scan are subtracted

from the measured high resolution rawdata in the measured

region(s), and that those rawdata are reconstructed and added

to the low resolution overview images.

While this sounds interesting a closer look at the subtraction

term

pH − XMfL

reveals that it is the difference between high resolution mea-

sured rawdata and low resolution virtual rawdata and thereby

must be equivalent to a high–pass filtering of the measured

data. If h denotes an appropriate high–pass filter then we may

summarize our findings as

pH − XMfL = h ∗ pH.

Hence, we can obtain the high resolution reconstruction as

fH = fL + X
−1

H (h ∗ pH) (3)

which does not involve any forward projections.

To find the appropriate high–pass filter let us go to Fourier

domain and let MTFL(u) and MTFH(u) be the presampling
MTFs of the low resolution overview scan and of the high

resolution ROI scan, respectively, both being scaled to the

isocenter. Then, the high–pass filter H(u) should have the

property

MTFL(u) + MTFH(u)H(u) = MTFH(u).

Solving for H(u) yields

H(u) = 1−
MTFL(u)

MTFH(u)
.

Note that the simplicity of the data filtering method is

appealing. Although the method is analytically equivalent

to the completion method this is not true numerically. The

downside of the data filtering method is increased image noise

and increased susceptibility to artifacts in the high resolution

region since the method just adds a correction term to the low

resolution data and thereby cannot eliminate image noise or

artifacts inherent in fL.

C. Data Weighting Method

Our third method has two advantages: the advantage of the

data completion method of not having artifacts propagating

into the high resolution ROI and the advantage of the high–

pass filtering method of being computationally highly efficient.

This is achieved by designing appropriate weighting functions

wL(ϑ, ξ) and wH(ϑ, ξ) that shall be multiplied to the low and

high resolution rawdata, respectively.

To start, let us define a redundancy weight wR(ϑ, ξ). When-

ever the scan range exceeds 180◦ plus fan angle we need to

either weight the data with a short scan weight, which is also

known as the Parker weight function, or if the scan exceeds

360◦ we need to weight the data with the overscan weight

function. In case of a shifted detector design the corresponding

shifted detector weight can be applied. These redundancy

weight functions can be taken from reference [23], for ex-

ample. Since the focal spot trajectory of the low resolution

and of the high resolution scan differ, in general, we need

to use two different redundancy weight functions wRL(ϑ, ξ)
and wRH(ϑ, ξ), respectively. The redundancy weights fulfill

equation (1) as shown in reference [23].

In addition a weight function wM(ϑ, ξ) is needed whose

support corresponds to the measured high resolution data. This

means that wM is zero wherever the high resolution scan has

missing rays and it smoothly increases to one where measured

high resolution data are available. Hence wM masks out the

truncated regions of the detector and the unmeasured angular

positions.

We now set

wH(ϑ, ξ) = wRH(ϑ, ξ)wM(ϑ, ξ)

wL(ϑ, ξ) = wRL(ϑ, ξ)
(

1−
∑

k

wH(ϑ + kπ, (−)kξ)
)

.

Then

fH = X
−1

L pLwL + X
−1

H pHwH (4)

yields the final volume in the high resolution ROI.

To see that everything is properly normalized let us tem-

porarily abbreviate w(ϑ + kπ, (−)kξ) as w(k). Keeping in

mind that wRL is properly normalized, because
∑

k wRL(k) =
1 by definition, we are now ready to check whether wL + wH

is properly normalized. We find

∑

k

(

wL(k) + wH(k)
)

=

∑

k

(

wRL(k)
(

1−
∑

l

wH(k + l)
)

+ wH(k)
)

=

∑

k

wRL(k)
(

1−
∑

l

wH(k + l)
)

+
∑

k

wH(k) =

∑

k

wRL(k)
(

1−
∑

l

wH(l)
)

+
∑

l

wH(l) =

∑

k

wRL(k) +
∑

l

wH(l)
(

1−
∑

k

wRL(k)
)

= 1.

To conclude this section, let us give an example of how to

define the weight function wM(ϑ, ξ) that is smooth and masks
out the unmeasured regions for the simple case of scanning a

cylindrical high resolution ROI of radius RMH and center o.
Note that a ray through the center of the ROI has the lateral

coordinate ξC = o · ϑ which is a function of the angle ϑ, in

general.

Let s(x) have the properties s(−x) = −s(x) and s(1) = 1.
Given that we apply the data weighting method to sampled

data it is also recommended to choose s to be smooth. We

use s(x) = sin(1

2
πx) for our numerical experiments. Now we

can define the mask function which in this case is a simple
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(a) Simulation (b) Measurement

Fig. 2. a) The simulated test phantom is shown in a low resolution overview reconstruction, a low resolution zoom version where the FOV corresponds to the
FOV used for the high resolution reconstructions. The high resolution reconstructions (bottom row) indicate that all three methods, the data completion, the
high–pass filtering and the data weighting method achieve equivalent results. b) Reconstructions of a measured connector element showing a low resolution
overview volume rendering, and a high resolution ROI reconstruction using the data weighting method. The high resolution volume is shown as a volume
rendering and as a CT slice. Within the ROI the desired high spatial resolution is achieved.

radial transition weight function

wM(ϑ, ξ) =
1

2







































0 if ξ < ξA

1 + s
(

2
ξ − ξA

ξB − ξA

− 1
)

else if ξ < ξB

2 else if ξ < ξD

1− s
(

2
ξ − ξD

ξE − ξD

− 1
)

else if ξ < ξE

0 else

that is zero in the outer region and smoothly increases to one in

the inner region of the high resolution scan. The parameters

ξA < ξB < ξC < ξD < ξE are functions of ϑ and specify

the lateral detector limits of the high resolution scan, and the

transition regions where the weight smoothly increases from

zero to one, and the center of the detector, as discussed above.

With ξC = o ·ϑ we use ξA = ξC−RMH, ξB = ξC−RMH+∆R,

ξD = ξC +RMH−∆R, and ξE = ξC +RMH with ∆R being the

size of the transition zone, 0 < ∆R ≪ RMH.

III. EXPERIMENTS

To evaluate the three methods defined in equations (2), (3)

and (4) we conducted several simulations and measurements.

The simulations were carried out by the analytical projection

simulator RayConStruct PS (RayConStruct GmbH, Nürnberg,

Germany). The measurements were done using the Tomo-

Scope HV 500 cone–beam CT scanner (Werth Messtechnik

GmbH, Gießen, Germany). The tube voltage was 200 kV.

The geometry is a flat detector cone–beam geometry with

about 1000 projections per full rotation and a detector with

about 1000 by 1000 detector pixels of size 0.4 mm. The

distance of the focal spot to the detector surface was chosen as

2400 mm and the radii of the circle scans were set to RFL =
1200 mm and RFH = 150 mm for the low resolution overview

and the high resolution ROI scan, respectively. This results in

a radius of the field of measurement of RML = 100 mm for

the overview scan and of RMH = 12.5 mm for the ROI scan.

Thus, the ROI scan zooms into the object by a factor of eight.

IV. RESULTS

Figure 2a) shows various reconstructions of the simulated

test phantom. The overview image depicts all objects within

the low resolution field of measurement. A dashed circle

indicates the region of interest. There is also a zoom version

of the overview image which was produced by reconstructing

the overview data pL on the same voxel grid as will be used

for the reconstructions of the ROI data. The three images at

the bottom row of subfigure a) are the ROI reconstructions

that use the three methods data completion, data filtering and

data weighting to combine pL with pH.

The measured connector element is presented in figure

2b). The overview scan pL can be used to reconstruct the

complete object (here, a volume rendering of the connector

is shown). The ROI reconstructions (one volume rendering

and one transversal slice) instead only show a portion of the

connector with high spatial resolution within the cylindrical

ROI and low spatial resolution outside the ROI. Due to space

limitations the measurement is only shown using the data

weighting method.

Figure 3 is the scan of a chromatography column. Only

a square section centered around the ROI is shown in four
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Fig. 3. Chromatography column filled with silica gel. The figures show the
zoomed FOV of the ROI. The 50 mm inner diameter is surrounded by a 9 mm
thick glas cylinder which is surrounded by a 0.5 mm splinter shield (scatter
protection) foil. Only the ROI reconstructions show the scatter protection foil
(arrows). The ROI diameter is 25 mm.

versions: overview image, data completion method, data fil-

tering method, and data weighting method. The properties

of the filtering method are as expected because noise is

increased. Rather unexpected but quite evident is the fact that

the only ROI method that does not show ring artifacts is the

data filtering method while the completion and the weighting

methods show some ring artifacts.

V. DISCUSSION

Whenever an overview scan is available it is relatively

simple to perform local tomography. To improve the compu-

tational performance and to reduce the memory requirements

we proposed two methods that do not need to complete the

truncated data of the high resolution scan and that do not

need to perform forward projections of an overview volume.

In fact these two methods do not even need to reconstruct

the overview volume. While our preliminary results shown

here give the impression that the data filtering method is of

equal image quality as the data weighting method a further

analysis using simulations and measurements shows that this

is not always the case. Noise and artifacts that propagate

from the low resolution reconstruction into the ROI cannot

be removed by the data filtering method. The data weighting

method, however, does not suffer from those artifacts because

only very low frequencies propagate from the low resolution

data into the high resolution scan.

Summarizing, we evaluated three highly promising ap-

proaches that are readily applicable for industrial tomography.
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