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Abstract. Synthetic medical image generation has evolved as a key
technique for neural network training and validation. A core challenge,
however, remains in the domain gap between simulations and real
data. While deep learning-based domain transfer using Cycle Genera-
tive Adversarial Networks and similar architectures has led to substan-
tial progress in the field, there are use cases in which state-of-the-art
approaches still fail to generate training images that produce convincing
results on relevant downstream tasks. Here, we address this issue with
a domain transfer approach based on conditional invertible neural net-
works (cINNs). As a particular advantage, our method inherently guar-
antees cycle consistency through its invertible architecture, and network
training can efficiently be conducted with maximum likelihood training.
To showcase our method’s generic applicability, we apply it to two spec-
tral imaging modalities at different scales, namely hyperspectral imaging
(pixel-level) and photoacoustic tomography (image-level). According to
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comprehensive experiments, our method enables the generation of realis-
tic spectral data and outperforms the state of the art on two downstream
classification tasks (binary and multi-class). cINN-based domain trans-
fer could thus evolve as an important method for realistic synthetic data
generation in the field of spectral imaging and beyond. The code is avail-
able at https://github.com/IMSY-DKFZ/UDT-cINN.

Keywords: Domain transfer · invertible neural networks · medical
imaging · photoacoustic tomography · hyperspectral imaging · deep
learning

1 Introduction

The success of supervised learning methods in the medical domain led to count-
less breakthroughs that might be translated into clinical routine and have the
potential to revolutionize healthcare [6,13]. For many applications, however,
labeled reference data (ground truth) may not be available for training and vali-
dating a neural network in a supervised manner. One such application is spectral
imaging which comprises various non-interventional, non-ionizing imaging tech-
niques that can resolve functional tissue properties such as blood oxygenation in
real time [1,3,23]. While simulations have the potential to overcome the lack of
ground truth, synthetic data is not yet sufficiently realistic [9]. Cycle Generative
Adversarial Networks (GAN)-based architectures are widely used for domain
transfer [12,24] but may suffer from issues such as unstable training, hallucina-
tions, or mode collapse [15]. Furthermore, they have predominantly been used
for conventional RGB imaging and one-channel cross-modality domain adapta-
tion, and may not be suitable for other imaging modalities with more channels.
We address these challenges with the following contributions:

Domain Transfer Method: We present an entirely new sim-to-real transfer
approach based on conditional invertible neural networks (cINNs) (cf. Fig. 1)
specifically designed for data with many spectral channels. This approach inher-
ently addresses weaknesses of the state of the art with respect to the preservation
of spectral consistency and, importantly, does not require paired images.

Instantiation to Spectral Imaging: We show that our method can gener-
ically be applied to two complementary modalities: photoacoustic tomography
(PAT; image-level) and hyperspectral imaging (HSI; pixel-level).

Comprehensive Validation: In comprehensive validation studies based on
more than 2,000 PAT images (real: ∼1,000) and more than 6 million spectra for
HSI (real: ∼6 million) we investigate and subsequently confirm our two main
hypotheses: (H1) Our cINN-based models can close the domain gap between
simulated and real spectral data better than current state-of-the-art methods

https://github.com/IMSY-DKFZ/UDT-cINN
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Fig. 1. Pipeline for data-driven spectral image analysis in the absence of
labeled reference data. A physics-based simulation framework generates simulated
spectral images with corresponding reference labels (e.g. tissue type or oxygenation
(sO2)). Our domain transfer method based on cINNs leverages unlabeled real data to
increase their realism. The domain-transferred data can then be used for supervised
training of a downstream task (e.g. classification).

regarding spectral plausibility. (H2) Training models on data transferred by our
cINN-based approach can improve their performance on the corresponding (clin-
ical) downstream task without them having seen labeled real data.

2 Materials and Methods

2.1 Domain Transfer with Conditional Invertible Neural Networks

Concept Overview. Our domain transfer approach (cf. Fig. 2) is based on the
assumption that data samples from both domains carry domain-invariant infor-
mation (e.g. on optical tissue properties) and domain-variant information (e.g.
modality-specific artifacts). The invertible architecture, which inherently guar-
antees cycle consistency, transfers both simulated and real data into a shared
latent space. While the domain-invariant features are captured in the latent
space, the domain-variant features can either be filtered (during encoding) or
added (during decoding) by utilizing a domain label D. To achieve spectral con-
sistency, we leverage the fact that different tissue types feature characteristic
spectral signatures and condition the model on the tissue label Y if available.
For unlabeled (real) data, we use randomly generated proxy labels instead. To
achieve high visual quality beyond spectral consistency, we include two discrimi-
nators Dissim and Disreal for their respective domains. Finally, as a key theoret-
ical advantage, we avoid mode collapse with maximum likelihood optimization.
Implementation details are provided in the following.

cINN Model Design. The core of our architecture is a cINN [2] (cf. Fig. 2),
comprising multiple (i) scales of Ni-chained affine conditional coupling (CC)
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Fig. 2. Proposed architecture based on cINNs. The invertible architecture trans-
fers both simulated and real data into a shared latent space (right). By conditioning
on the domain D (bottom), a latent vector can be transferred to either the simulated
or the real domain (left) for which the discriminator Dissim and Disreal calculate the
losses for adversarial training.

blocks [7]. These scales are necessary in order to increase the receptive field
of the network and are achieved by Haar wavelet downsampling [11]. A CC
block consists of subnetworks that can be freely chosen depending on the data
dimensionality (e.g. fully connected or convolutional networks) as they are only
evaluated in the forward direction. The CC blocks receive a condition consisting
of two parts: domain label and tissue label, which are then concatenated to the
input along the channel dimension. In the case of PAT, the tissue label is a
full semantic and random segmentation map for the simulated and real data,
respectively. In the case of HSI, the tissue label is a one-hot encoded vector for
organ labels.

Model Training. In the following, the proposed cINN with its parameters θ
will be referred to as f(x,DY, θ) and its inverse as f−1 for any input x ∼ pD
from domain D ∈ {Dsim,Dreal} with prior density pD and its corresponding
latent space variable z. The condition DY is the combination of domain label D
as well as the tissue label Y ∈ {Ysim, Yreal}. Then the maximum likelihood loss
ML for a training sample xi is described by

ML
D

= Ei

[ ||f(xi,DY, θ)||22
2

− log|Ji|
]

with Ji = det

(
∂f

∂x

∣∣∣∣
xi

)
. (1)

For the adversarial training, we employ the least squares training scheme [18]
for generator GenD = f−1

D ◦ fD′ and discriminator DisD for each domain with
xD′ as input from the source domain and xD as input from the target domain:

L
GenD

= E
xD′ ∼pD′

[
(DisD(GenD(xD′) − 1))2

]
(2)

L
DisD

= E
xD∼pD

[
(DisD(xD) − 1)2

]
+ E

xD′ ∼pD′

[
(DisD(GenD(xD′)))2

]
. (3)
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Finally, the full loss for the proposed model comprises the following:

L
TotalGen

= ML
real

+ ML
sim

+ L
Genreal

+ L
Gensim

and L
TotalDis

= L
Disreal

+ L
Dissim

. (4)

Model Inference. The domain transfer is done in two steps: 1) A simulated
image is encoded in the latent space with conditions Dsim and Ysim to its latent
representation z, 2) z is decoded to the real domain via Dreal with the simulated
tissue label Ysim: xsim→real = f−1(·,DrealYsim, θ) ◦ f(·,DsimYsim, θ)(xsim).

2.2 Spectral Imaging Data

Photoacoustic Tomography Data. PAT is a non-ionizing imaging modality
that enables the imaging of functional tissue properties such as tissue oxygena-
tion [22]. The real PAT data (cf. Fig. 3) used in this work are images of human
forearms that were recorded from 30 healthy volunteers using the MSOT Acuity
Echo (iThera Medical GmbH, Munich, Germany) (all regulations followed under
study ID: S-451/2020, and the study is registered with the German Clinical Trials
Register under reference number DRKS00023205). In this study, 16 wavelengths
from 700 nm to 850 nm in steps of 10 nm were recorded for each image. The
resulting 180 images were semantically segmented into the structures shown in
Fig. 3 according to the annotation protocol provided in [20]. Additionally, a full
sweep of each forearm was performed to generate more unlabeled images, thus

Fig. 3. Training data used for the validation experiments. For PAT, 960 real
images from 30 volunteers were acquired. For HSI, more than six million spectra corre-
sponding to 460 images and 20 individuals were used. The tissue labels PAT correspond
to 2D semantic segmentations, whereas the tissue labels for HSI represent 10 different
organs. For PAT, ∼1600 images were simulated, whereas around 210,000 spectra were
simulated for HSI.
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amounting to a total of 955 real images. The simulated PAT data (cf. Fig. 3)
used in this work comprises 1,572 simulated images of human forearms. They
were generated with the toolkit for Simulation and Image Processing for Pho-
tonics and Acoustics (SIMPA) [8] based on a forearm literature model [21] and
with a digital device twin of the MSOT Acuity Echo.

Hyperspectral Imaging Data. HSI is an emerging modality with high poten-
tial for surgery [4]. In this work, we performed pixel-wise analysis of HSI
images. The real HSI data was acquired with the Tivita R© Tissue (Diaspec-
tive Vision GmbH, Am Salzhaff, Germany) camera, featuring a spectral resolu-
tion of approximately 5 nm in the spectral range between 500 nm and 1000 nm
nm. In total, 458 images, corresponding to 20 different pigs, were acquired (all
regulations followed under study IDs: 35-9185.81/G-161/18 and 35-9185.81/G-
262/19) and annotated with ten structures: bladder, colon, fat, liver, omentum,
peritoneum, skin, small bowel, spleen, and stomach (cf. Fig. 3). This amounts
to 6,410,983 real spectra in total. The simulated HSI data was generated
with a Monte Carlo method (cf. algorithm provided in the supplementary mate-
rial). This procedure resulted in 213,541 simulated spectra with annotated organ
labels.

3 Experiments and Results

The purpose of the experiments was to investigate hypotheses H1 and H2 (cf.
Sect. 1). As comparison methods, a CycleGAN [24] and an unsupervised image-
to-image translation (UNIT) network [16] were implemented fully convolution-
ally for PAT and in an adapted version for the one-dimensional HSI data. To
make the comparison fair, the tissue label conditions were concatenated with
the input, and we put significant effort into optimizing the UNIT on our data.

Realism of Synthetic Data (H1) : According to qualitative analyses (Fig. 4) our
domain transfer approach improves simulated PAT images with respect to key
properties, including the realism of skin, background, and sharpness of vessels.

Fig. 4. Qualitative results. In comparison to simulated PAT images (left), images
generated by the cINN (middle) resemble real PAT images (right) more closely. All
images show a human forearm at 800 nm.
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Fig. 5. Our domain transfer approach yields realistic spectra (here: of veins).
The PCA plots in a) represent a kernel density estimation of the first and second
components of a PCA embedding of the real data, which represent about 67% and 6%
of the variance in the real data, respectively. The distributions on top and on the right
of the PCA plot correspond to the marginal distributions of each dataset’s first two
components. b) Violin plots show that the cINN yields spectra that feature a smaller
difference to the real data compared to the simulations and the UNIT-generated data.
The dashed lines represent the mean difference value, and each dot represents the
difference for one wavelength.

A principal component analysis (PCA) performed on all artery and vein spectra
of the real and synthetic datasets demonstrates that the distribution of the syn-
thetic data is much closer to the real data after applying our domain transfer
approach (cf. Fig. 5a)). The same holds for the absolute difference, as shown in
Fig. 5b). Slightly better performance was achieved with the cINN compared to
the UNIT. Similarly, our approach improves the realism of HSI spectra, as illus-
trated in Fig. 6, for spectra of five exemplary organs (colon, stomach, omentum,
spleen, and fat). The cINN-transferred spectra generally match the real data
very closely. Failure cases where the real data has a high variance (translucent
band) are also shown.

Benefit of Domain-Transferred Data for Downstream Tasks (H2): We examined
two classification tasks for which reference data generation was feasible: classifi-
cation of veins/arteries in PAT and organ classification in HSI. For both modal-
ities, we used the completely untouched real test sets, comprising 162 images
in the case of PAT and ∼ 920,000 spectra in the case of HSI. For both tasks,
a calibrated random forest classifier (sklearn [19] with default parameters) was
trained on the simulated, the domain-transferred (by UNIT and cINN), and real
spectra. As metrics, the balanced accuracy (BA), area under receiver operating
characteristic (AUROC) curve, and F1-score were selected based on [17].

As shown in Table 1, our domain transfer approach dramatically increases
the classification performance for both downstream tasks. Compared to physics-
based simulation, the cINN obtained a relative improvement of 37% (BA), 25%
(AUROC), and 22% (F1 Score) for PAT whereas the UNIT only achieved a
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Fig. 6. The cINN-transferred spectra are in closer agreement with the real
spectra than the simulations and the UNIT-transferred spectra. Spectra for
five exemplary organs are shown from 500 nm to 1000 nm. For each subplot, a zoom-in
for the near-infrared region (>900 nm) is shown. The translucent bands represent the
standard deviation across spectra for each organ.

Table 1. Classification scores for different training data. The training data
refers to real data, physics-based simulated data, data generated by a CycleGAN, by a
UNIT without and with tissue labels (UNITY), and by a cINN without (cINND) and
with (proposed cINNDY) tissue labels as condition. Additionally, cINNDY without GAN

refers to a cINNDY without the adversarial training. The best-performing methods,
except if trained on real data, are printed in bold.

Classifier training data PAT HSI

BA AUROC F1-Score BA AUROC F1-Score

Real 0.75 0.84 0.82 0.40 0.81 0.44

Simulated 0.52 0.64 0.64 0.24 0.75 0.18

CycleGAN 0.39 0.20 0.16 0.11 0.57 0.06

UNIT 0.50 0.44 0.65 0.20 0.72 0.20

UNITY 0.64 0.81 0.77 0.24 0.74 0.25

cINND 0.66 0.73 0.72 0.25 0.72 0.20

cINNDY without GAN 0.65 0.78 0.76 0.28 0.75 0.26

cINNDY (proposed) 0.71 0.80 0.78 0.29 0.76 0.24

relative improvement in the range of 20%-27% (depending on the metric). For
HSI, the cINN achieved a relative improvement of 21% (BA), 1% (AUROC),
and 33% (F1 Score) and it scored better in all metrics except for the F1 Score
than the UNIT. For all metrics, training on real data still yields better results.

4 Discussion

With this paper, we presented the first domain transfer approach that com-
bines the benefits of cINNs (exact maximum likelihood estimation) with those
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of GANs (high image quality). A comprehensive validation involving qualita-
tive and quantitative measures for the remaining domain gap and downstream
tasks suggests that the approach is well-suited for sim-to-real transfer in spectral
imaging. For both PAT and HSI, the domain gap between simulations and real
data could be substantially reduced, and a dramatic increase in downstream task
performance was obtained - also when compared to the popular UNIT approach.

The only similar work on domain transfer in PAT has used a cycle GAN-
based architecture on a single wavelength with only photon propagation as PAT
image simulator instead of full acoustic wave simulation and image reconstruc-
tion [14]. This potentially leads to spectral inconsistency in the sense that the
spectral information either is lost during translation or remains unchanged from
the source domain instead of adapting to the target domain. Outside the spec-
tral/medical imaging community, Liu et al. [16] and Grover et al. [10] tasked
variational autoencoders and invertible neural networks for each domain, respec-
tively, to create the shared encoding. They both combined this approach with
adversarial training to achieve high-quality image generation. Das et al. [5] built
upon this approach by using labels from the source domain to condition the
domain transfer task. In contrast to previous work, which used en-/decoders
for each domain, we train a single network as shown in Fig. 2. with a two-fold
condition consisting of a domain label (D) and a tissue label (Y ) from the
source domain, which has the advantage of explicitly aiding the spectral domain
transfer.

The main limitation of our approach is the high dimensionality of the param-
eter space of the cINN as dimensionality reduction of data is not possible due to
the information and volume-preserving property of INNs. This implies that the
method is not suitable for arbitrarily high dimensions. Future work will comprise
the rigorous validation of our method with tissue-mimicking phantoms for which
reference data are available.

In conclusion, our proposed approach of cINN-based domain transfer enables
the generation of realistic spectral data. As it is not limited to spectral data,
it could develop into a powerful method for domain transfer in the absence of
labeled real data for a wide range of image modalities in the medical domain
and beyond.
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