Institute of Medical Physics (IMP) Friedrich-Alexander-University of Erlangen-Nürnberg Henkestr. 91, 91052 Erlangen, Germany

Micro–CT Mouse Phantom

Author: Philip Stenner, Marc Kachelrieß

June 26th, 2007

The mouse phantom was designed to verify the Empirical Dual Energy Calibration (EDEC)¹ in the scale of micro–CT.

Phantom body

The phantom has a width of 32 mm, a height of 24 mm and a length of 40 mm. The lower part of the phantom body is half of an elliptic cylinder (semi-major axis a and semi-minor axis $b = \frac{a}{2}$). The upper part is half of a cylinder with radius r that satisfies the requirement r = a = 16 mm. Two smaller elliptic cylinders have been cut out of the latter at an angle of 45°. The phantom is translationally invariant in the z-direction. The phantom body is made up of water equivalent plastic. The unit for the lengths in the image below is mm.

¹Philip Stenner, Timo Berkus and Marc Kachelrieß: *Empirical Dual Energy Calibration (EDEC) for Cone–Beam Computed Tomography*, Medical Physics, Vol. 34., in press, 2007.

Inserts

There is a total number of nine inserts: five bones (1–5), two high contrast (6 and 7) and one low contrast insert (8) and a lung insert (9). All inserts have a length of 40 mm. The positions, orientations and materials of the inserts are described in table 1. The image shown to the right is a simulation at 65 kV and is windowed to (C = 0 HU / W = 200 HU).

Insert	Position (x/y)	Size (a/b)	Angle α	Material	CT–Value at
number	/ mm	$/ \mathrm{mm}$	/ °		$120~{\rm kV}$ / HU
1	(-12/-1)	(2.5/2.5)	n.a.	HA400	1110
2	(12/-1)	(2.5/2.5)	n.a.	HA400	1110
3	(0/14)	(1.5/1.5)	n.a.	HA400	1110
4	(-4/13)	(1/1)	n.a.	HA200	590
5	(4/13)	(1/1)	n.a.	HA200	590
6	(0/9)	(2/1)	30	Iodine1	100
7	(2/3)	(0.5/0.5)	n.a.	Iodine2	420
8	(-4.5/4)	(6/3)	135	soft tissue	-35
9	(6/6)	(4/3)	110	lung	-700

Table 1: The x- and y- coordinates indicate the position of the insert's center with respect to the center of the phantom body defined in the figure on page 1. The values for a and b represent the lengths of the semi-major and semi-minor axes of an elliptical insert. For circular inserts a = b. The insert's orientation with respect to the horizontal axis is given by the angle α . As for the materials HA is the abbreviation for hydroxiapatite with the density given in mg/mL. Iodine1, respectively Iodine2, is a mixture of Iodine and water with a density of 1.00265 mg/mm³, respectively 1.01059 mg/mm³. The CT-values are mean values taken from a simulation at 120 kV.

Figure 1: A physical phantom has been built by QRM (Möhrendorf) according to the same specifications.