Patienten-adaptierte Schwellwerteinstellungen für Optimalen Jodkontrast in einem Photonenzählenden Ganzkörper-CT

Patient-Specific Threshold Settings for Optimal lodine Contrast in a Whole-Body Photon-Counting CT

Stefan Sawall^{1,2}, Sabrina Dorn^{1,2}, Laura Klein^{1,2}, Joscha Maier^{1,2}, Sebastian Faby³, Monika Uhrig^{1,2}, Heinz-Peter Schlemmer^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University of Heidelberg, Germany ³Siemens Healthineers, Forchheim, Germany

SOMATOM CounT CT @ DKFZ

Gantry from a clinical dual source scanner

A: conventional CT detector (50 cm FOV) B: Photon counting detector (27.5 cm FOV)

Siemens prototype, not commercially available.

Photon-Counting CT Counting Single Photons

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

Photon-Counting CT Spectral/Energy Information

Photon-Counting CT Spectral/Energy Information

Photon-Counting CT Spectral/Energy Information

To evaluate iodine CNRD as function of threshold settings using a photon-counting (PC) detector compared to a conventional energy-integrating (EI) CT detector.

Materials & Methods Phantoms

- Semi-anthropomorphic thorax • and liver phantom
- Three different phantom sizes
 - Small (200 × 300 mm)
 - Medium
 - Large

- (250 × 350 mm)
- (300 × 400 mm)

Materials & Methods Image Acquisition and Reconstruction

Images are acquired at different tube voltages:

- 80 kV $\,$ at 4.40 mGy $\,$ (CTDI $_{\rm vol~32~cm}$) using 200 mAs $_{\rm eff}$

- -100 kV at 9.20 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- 120 kV at 15.03 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- 140 kV at 21.76 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- However, in the following only reasonable combinations are considered:
 - 80 kV is used for the small patient
 - 100 kV is used for the medium patient
 - 140 kV is used for the large patient

 In case of the photon-counting detector, the thresholds were varied in the permissible range between 50 keV and 90 keV in steps of 5 keV.

Materials & Methods Example: 80 kV, Medium Phantom

Complete Spectrum (20 keV – 80 keV)

<mark>Bin 1</mark> (20 keV – 50 keV)

Materials & Methods Regions of Interest

C/W=180 HU/600 HU

Materials & Methods CNRD Computations

 The contrast-to-noise ratio (CNR) could be used as a figure of merit:

$$CNR = \frac{Contrast}{Noise} = \frac{|\mu_{ROI 1} - \mu_{ROI 2}|}{\sqrt{\sigma_{ROI 1}^2 + \sigma_{ROI 2}^2}}$$

 To account for different tube voltages and different dose levels we rather use the dose-normalized CNR (CNRD):

$$CNRD = \frac{Contrast}{Noise \cdot \sqrt{Dose}} = \frac{CNR}{\sqrt{Dose}}$$

Materials & Methods CNRD Optimization – Bin Combination

- To optimize CNRD in case of two bins, we use an inverse variance weighting.
- In particular, weights for bin b are given as

with C_b being the contrast in the respective bin image and V_b being the variance in the ROIs used to compute C_b .

The resulting CNR is

$$CNR^2 = \frac{\left(\sum_b w_b C_b\right)^2}{\sum_b w_b^2 V_b}$$

Summary & Conclusion

- The photon-counting detector is always superior to the energy-integrating detector in terms of iodine CNRD.
- This finding holds for all considered threshold settings, all tube voltages and all phantom sizes.
- In doubt, one may use a threshold of 50 keV.
- The threshold settings pose an additional degree of freedom and might be used in future applications.

Summary & Conclusion

- The photon-counting detector is always superior to the energy-integrating detector in terms of iodine CNRD.
- This finding holds for all considered threshold settings, all tube voltages and all phantom sizes.
- In doubt, one may use a threshold of 50 keV.
- The threshold settings pose an additional degree of freedom and might be used in future applications.

What's next?

Summary & Conclusion

- The photon-counting detector is always superior to the energy-integrating detector in terms of iodine CNRD.
- This finding holds for all considered threshold settings, all tube voltages and all phantom sizes.
- In doubt, one may use a threshold of 50 keV.
- The threshold settings pose an additional degree of freedom and might be used in future applications.
- Clinical k-edge imaging seems within reach.
- However, novel contrast agents are required.

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] Gm<u>bH, Nürnberg, Germany.</u>