Al-Based Image Reconstruction: Basics, Vendor Implementations and Potential Pitfalls

Marc Kachelrieß **German Cancer Research Center (DKFZ)** Heidelberg, Germany www.dkfz.de/ct

HELMHOLTZ-GEMEINSCHAFT

Learning Objectives

- To learn that Al-based image reconstruction is mainly noise reduction
- To understand how AI-based image reconstruction works
- To learn about its dose reduction potential, and about potential pitfalls

Fully Connected Neural Network

- Each layer fully connects to previous layer
- Difficult to train (many parameters in W and b)
- Spatial relations not necessarily preserved

 $y(x) = f(W \cdot x + b)$ with $f(x) = (f(x_1), f(x_2), ...)$ point-wise scalar, e.g. $f(x) = x \vee 0 = \text{ReLU}$

Convolutional Neural Network (CNN)

- Replace dense W in $y(x) = f(W \cdot x + b)$ by a sparse matrix W with sparsity being of convolutional type.
- CNNs consist (mainly) of convolutional layers.
- Convolutional layers are not fully connected.
- Convolutional layers are connected by small, say 3x3, convolution kernels whose entries need to be found by training.
- CNNs preserve spatial relations to some extent.

Here, a 2D example is shown. Conv layers also exist in 3D and higher dimensions.

¹O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. Proc. MICCAI:234-241, 2015.

High-End and Mid-Range Systems 2023

CT-System	Rotation, Cone, Coll.	Max. Power, Anode Angle, Name, Max. mA @ low kV	Patient-specific prefilters	Detector Configuration, Type, Name	FOM, Reconstruction Matrix	Special Reconstruction Algorithms	Spectral	
Canon Aquilion ONE Prism Edition	0.275 s, 15°, 160 mm	100 kW, 10°, MegaCool Vi, 600 mA @ 80 kV	Ag, {0, <i>x</i> } mm	320 × 0.5 mm, El, PUREVISION	50 cm, 512	iterative (AIDR 3D), deep (AiCE, PIQE)	fast TVS with DL	н
Canon Aquilion Precision Edition	0.35 s, 3.8°, 40 mm	72 kW, 7°, MegaCool, 600 mA @ 80 kV	none	160 × 0.25 mm, El, PUREVISION	50 cm, 512, 1024, 2048	iterative (AIDR 3D), deep (AiCE)	2 scans	н
GE Revolution Apex Elite	0.23 s, 15°, 160 mm	108 kW, 10°, Quantix 160, 1300 mA @ 70+80 kV	none	256 × 0.625 mm, El, GemStone Clarity	50 cm, 512		fast TVS or 2 scans	н
GE Revolution Apex Plus	0.28 s, 7.6°, 80 mm	108 kW, 10°, Quantix 160, 1300 mA @ 70 kV	none	128 × 0.625 mm, El, GemStone Clarity	50 cm, 512	deep (TrueFidelity), SnapshotFreeze	fast TVS or 2 scans	Μ
Philips Spectral CT 7500	0.27 s, 7.7°, 80 mm	120 kW, 8°, iMRC, 925 mA @ 80 kV	none	2 · 128 × 0.625 mm, El, NanoPanel Prism	50 cm, 512, 768, 1024	iterative (iDose)	sandwich	н
Philips Incisive CT	0.35 s, 3.9°, 40 mm	80 kW, ∨MRC	none	2 · 64 × 0.625 mm, EI	50 cm, 512, 768, 1024	iterative (iDose), deep (Precise Image&Cardiac)		М
Siemens Somatom X.ceed	0.25 s, 3.7°, 38.4 mm	120 kW, 8°, Vectron, 1300 mA @ 70+80+90 kV	Sn, {0, 0.4, 0.7} mm	2 · 64 × 0.6 mm, El, Stellar	50 cm, 512, 768, 1024	iterative (ADMIRE)	split filter (Twin Beam) or 2 scans (Twin Spiral)	М
Siemens Somatom Force	0.25 s, 5.5°, 57.6 mm	2 · 120 kW, 8°, Vectron, 2 · 1300 mA @ 70+80+90 kV	Sn, {0, 0.6} mm	2 · 2 · 96 × 0.6 mm, El, Stellar	50 cm/35 cm, 512, 768, 1024	iterative (ADMIRE)	DSCT	н
Siemens Naeotom Alpha	0.25 s, 5.5°, 57.6 mm	2 · 120 kW, 8°, Vectron, 2 · 1300 mA @ 70+90 kV	Sn, {0, 0.4, 0.7} mm	2 · 144×0.4 or 2 · 120×0.2 mm, PC, QuantaMax	50 cm/36 cm, 512, 768, 1024	iterative (QIR)	DSCT and PCCT	Н

Premium Recon Algorithms 2023

Vendor	Algorithm	Additional parameters	Sinogram restoration	Image restoration	Full iterations	AI, Deep learning
all	FBP	-	\checkmark	-	-	-
Canon	AIDR-3D enhanced FIRST AiCE PIQE	Body, Bone, Brain, Cardiac, Lung each with Mild, Standard, or Strong ?	✓ ✓ ? ?	\checkmark	- ~ -	- - - -
GE	ASIR, ASIR-V True Fidelity	0 – 100% (e.g. ASIR 30%) ???	✓ ?	√ √	-	- ✓
Philips	iDose IMR Precise Image&Cardiac	Levels 1 – 7 Soft, Routine, or SharpPlus ???	✓ ? ?	✓ ? ?	- ? ?	- - ~
Siemens	IRIS SAFIRE ADMIRE QIR (PCCT-specific)	Strength 1 – 5 Strength 1 – 5 Strength 1 – 5 Strength 1 – 4	\checkmark	\checkmark	-	

M. Lell and M. Kachelrieß. Recent and upcoming technological developments in CT. Invest. Radiol. Feb. 2020

Dose Reduction by Sparse View Scanning and Al-Based Reconstruction

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis. ArXiv 2016.

64 **(q**)

96 **U**

- Architecture based on state-of-the-art networks for image classification (ResNet).
- 32 conv layers with skip connections
- About 2 million tunable parameters in total
- Input is arbitrarily-size stack of images, with a fixed number of adjacent slices in the channel/feature dimension.

Low dose images (1/4 of full dose)

Denoised low dose

Full dose

Denoised full dose

Denoised low dose

Denoised low dose

Canon's AiCE

- Advanced intelligent Clear-IQ Engine (AiCE)
- Trained to restore low-dose CT data to match the properties of FIRST, the model-based IR of Canon.
- FIRST is applied to high-dose CT images to obtain a high fidelity training target

Information taken from https://global.medical.canon/products/computed-tomography/aice_dlr

U = 100 kV CTDI = 0.6 mGy DLP = 24.7 mGy·cm D_{eff} = 0.35 mSv

AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)

Courtesy of Radboudumc, the Netherlands

Noise Reduction: GE's True Fidelity

- Based on a deep CNN
- Trained to restore low-dose CT data to match the properties of high quality FBP datasets.
- Said to preserve noise texture and NPS

The 20 cm water phantom (GE Healthcare, WI, US) was scanned on Revolution CT with two CTDIvol levels: 4.9mGy and 15.1mGy, and 2.5 mm thick images were reconstructed using FBP, ASiR-V 100% and DLIR-H (Fig. 11a). ASiR-V 100% and DLIR-H were selected for the highest potential visible change in image texture relative to the FBP reference at higher dose, for a challenging setup to compare the impact of the iterative reconstruction and deep-learning technologies on image appearance. The normalized NPS curves (Fig. 11b) show that images of low-dose DLIR have the same NPS characteristics as the images of high-dose FBP, whereas iterative reconstruction produces results that are clearly different.

FBP

ASIR V 50%

True Fidelity

Courtesy of GE Healthcare

Solomon et al. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020

Philips' Precise Image

 Noise-injected data serve as low dose examples while their original reconstructions are the labels. A CNN learns how to denoise the low dose images.

iDose⁴ 1.4 mSv

iDose⁴ 1.5 mSv

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf

Precise Image 0.75 mSv

iDose⁴ 5.1 mSv

Precise Image 2.6 mSv

Precise Image 0.7 mSv

iDose⁴ 5.4 mSv

Precise Image 2.6 mSv

Canon's PIQE

- PIQE (precise IQ engine) is trained to convert low resolution images into high resolution images
- Training data are taken from Canon's Precision CT that has small detector pixels (0.25 mm at iso).
- Claims:
 - Improved visualization of plaque
 - Reduction in blooming artifacts

Are the Methods Reliable?

- Studies about explainability of AI in CT image formation are more than sparse.
- Cosmetic corrections:
 - Unclear if noise reduction, artifact reduction etc. is removing/adding lesions. The whole process is a black box. Proofs do not exist.
 - Super resolution applications may only achieve the impression of higher spatial resolution: Two closely adjacent small lesions that appear as one blurry lesion in the original image, are they converted to two separate objects or just to one non-blurry lesion?
- Difficult, if not impossible, to perform quality assurance.

Take Home Points

- Al plays and will play a significant role in CT image formation.
- High potential for
 - Noise and dose reduction
 - Artifact correction
 - Real-time dose assessment (also for RT)
- Care has to be taken
 - Underdetermined acquisition, e.g. sparse view or limited angle CT, require the net to make up information!
 - Nice looking images do not necessarily represent the ground truth.
 - Data consistency layers and variational networks with rawdata access may ensure that the information that is made up is consistent with the measured data.

- ...

Thank You!

In case of questions or suggestions please write to marc.kachelriess@dkfz.de.

