Artifacts and Pitfalls in CT

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

In-plane resolution: 0.4 ... 0.7 mm Nominal slice thickness: $S = 0.5 \dots 1.5$ mm Tube (max. values): 120 kW, 150 kV, 1300 mA Effective tube current: mAs_{eff} = 10 mAs ... 1000 mAs Rotation time: $T_{rot} = 0.25 \dots 0.5$ s Simultaneously acquired slices: $M = 16 \dots 320$ Table increment per rotation: $d = 1 \dots 183$ mm Scan speed: up to 73 cm/s Temporal resolution: 50 ... 250 ms

Philips iMRC

Siemens Straton

Cone-Beam Artifacts

Motion Artifacts of the Heart

These are minimized or avoided using phase-correlated scan and/or reconstruction techniques.

Standard Display

0,5×0,5×0,5 mm³ C = 50 HU, W = 400 HU

Sliding Thin Slab (STS) Display

Ien

"Reconstr

Linear Partial Volume Effect

Partial Volume Effect: Experiment

Partial Volume Effect: Experiment

Linear and Non-Linear Partial Volume Effect

Log domain average (linear PVE) Intensity domain average (non-linear PVE) Intensity minus log domain average

C = 40 HU, W = 200 HU

C = 0 HU, W = 100 HU

Blooming Artifacts and their Reduction

Cardiac reconstruction

Calcification + Blooming

Estimated calcification

- This shows a dedicated blooming artifact reduction approach based on a discrete tomography reconstruction technique.
- Blooming artifacts are also suppressed by today's iterative reconstruction algorithms.

Sampling Artifacts and their Removal

 $S_{\rm eff}$ = 3 mm, Rl = 3 mm

$S_{\rm eff} = 3$ mm, Rl = 1 mm

Always perform Overlapping Recons!

C = 0 HU, W = 800 HU

Windmill Artifacts and their Removal

ASSR reconstruction, p = 1.0, (C = 0 HU, W = 200 HU)

Windmill Artifacts in Spiral Shuttle Mode

- **Siemens SOMATOM Force**
- **Perfusion measurement**
- Pitch p = 1•
- $\Delta_{xy} = 0.93 \text{ mm}$ $\Delta_z = 1.25 \text{ mm}$

C = 300 HU, W = 1000 HU

BH: Perfusion Analysis in CT

Beam Hardening

- Measurement $q = -\ln \int dE \, w(E) e^{-\int dL \, \mu(\boldsymbol{r}, E)}$
- Single material approximation: $\mu(\mathbf{r}, E) = f_1(\mathbf{r})\psi_1(E)$

$$q = -\ln \int dE \, w(E) e^{-p_1 \psi_1(E)}$$

 \rightarrow cupping artifacts, first order BH artifacts \rightarrow cupping correction (water precorrection)

• Two material case: $\mu(r, E) = f_1(r)\psi_1(E) + f_2(r)\psi_2(E)$ $q = -\ln \int dE w(E)e^{-p_1}\psi_1(E) - p_2\psi_2(E)$

 \rightarrow banding artifacts, higher order BH artifacts \rightarrow higher order BH correction

Patient Data Spiral 4-Slice CT Scan at 120 kV

Original Image

BHC Image

Original minus BHC

(C = 40 HU, W = 150 HU)

(C = 0 HU, W = 100 HU)

Red values indicate the range of CT-values within the corresponding ROI in HL

M. Kachelrieß, and W.A. Kalender, "Improving PET/CT attenuation correction with iterative CT beam hardening correction," IEEE Medical Imaging Conference Program, M04-5, October 2005.

0.+30]

M. Kachelrieß, and W.A. Kalender, "Improving PET/CT attenuation correction with iterative CT beam hardening correction," IEEE Medical Imaging Conference Program, M04-5, October 2005.

correction (EBHC) for CT," Med. Phys. 37(10):5179-5187, October 2010.

Metal artifacts are

+ increased susceptibility to sampling artifacts and motion.

Linear Interpolation MAR (LIMAR)

Normalized MAR (NMAR)

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 0 HU, W = 500 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 0 HU, W = 500 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

Results and Comparison: Patient Data

Uncorrected LIMAR NMAR

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top row: (C = 100 HU, W = 750 HU). Bottom row: (C = 1000 HU, W = 4000 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

FSMAR: Scheme

FSMAR: Results

Uncorrected

LIMAR

NMAR

Patient with spine fixation, Somatom Definition, (C=100/W=1000).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Frequency split metal artifact reduction (FSMAR) in computed tomography", Med. Phys. 39(4):1904-1916, 2012.

NMAR: Results

Uncorrected

NMAR

Bone removal (with scanner software), (C=40/W=500).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

DECT

and Pseudo Monochromatic Imaging

Pseudo monochromatic imaging is a linear combination of DECT f_L and f_H : $f_{\alpha} = (1 - \alpha) f_L + \alpha f_H$

n

dkfz.

Original

DEMAR

IMAR (FSNMAR)¹

 α = 1.61, *E* = 176 keV

Patient 3 100 kV

DEMAR not applicable since this is a single energy CT scan.

¹Iterative metal artifact reduction (IMAR) is the Siemens product implementation of FSNMAR.

Adaptive Detruncation Method (ADT)

Adaptive Detruncation Method (ADT)

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

