Basics of X-Ray-Based Tomographic Imaging for IGRT 1: Diagnostic CT and Flat Detector CT

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Siemens $2 \cdot 2 \cdot 96 = 384$ -slice dual source cone-beam spiral CT(2013)

EMI parallel beam scanner (1972)

180 views per rotation in 300 s
2×160 positions per view
384 B/s data transfer rate
113 kB data size

525 views (1050 readings) per rotation in 0.25 s 2.96×(920+640) two-byte channels per view 1,200 MB/s data transfer rate up to 4 GB rawdata, 2 GB volume size typical

Siemens 2.2.96=384-slice dual source cone-beam spiral CT(2013)

180 views per rotation in 300 s
2×160 positions per view
384 B/s data transfer rate
113 kB data size

R

525 views (1050 readings) per rotation in 0.25 s 2⋅96×(920+640) two-byte channels per view 1,200 MB/s data transfer rate up to 4 GB rawdata, 2 GB volume size typical

Siemens 2.2.96=384-slice dual source cone-beam spiral CT(2013)

EMI parallel beam scanner (1972)

180 views per rotation in 300 s
2×160 positions per view
384 B/s data transfer rate
113 kB data size

R

525 views (1050 readings) per rotation in 0.25 s 2⋅96×(920+640) two-byte channels per view 1,200 MB/s data transfer rate up to 4 GB rawdata, 2 GB volume size typical

Siemens $2 \cdot 2 \cdot 96 = 384$ -slice dual source cone-beam spiral CT(2013)

180 views per rotation in 300 s
2×160 positions per view
384 B/s data transfer rate
113 kB data size

R

525 views (1050 readings) per rotation in 0.25 s 2.96×(920+640) two-byte channels per view 1,200 MB/s data transfer rate up to 4 GB rawdata, 2 GB volume size typical

GE Revolution CT

Philips IQon Spectral CT

Siemens Somatom Force

Toshiba Aquilion ONE Vision

Clinical vs. Flat Detector CT Clinical CT Flat Detector CT

What does CT Measure?

- X-rays are generated in an x-ray tube.
- The polychromatic radiation is attenuated in the patient. X-ray photon attenuation is dominated by the photo and the Compton effect.
- Detectors measure the x-ray intensity after the rays have passed through the patient along several lines L.
- The log intensity is the so-called x-ray transform:

$$q(L) = -\ln \frac{I(L)}{I_0} = -\ln \int dE \, w(E) e^{-\int dL \mu(\boldsymbol{r}, E)}$$

Often, the following monochromatic approximation is used:

$$q(L) \approx p(L) = \int dL \mu(\boldsymbol{r}, E_{\text{eff}})$$

I(L)

120 kV + 0 mm water with and without prefilter

120 kV + 320 mm water with and without prefilter

Fan-Beam Geometry (transaxial / in-plane / x-y-plane)

x-ray tube

field of measurement (FOM) and object

detector

In the order of 1000 detector channels are available per detector row.

Data Completeness

Each object point must be viewed by an angular interval of 180° or more. Otherwise image reconstruction is not possible.

V

Equipment Technology

In-plane resolution: 0.4 ... 0.7 mm Nominal slice thickness: $S = 0.5 \dots 1.5$ mm Tube (max. values): 120 kW, 150 kV, 1300 mA Effective tube current: mAs_{eff} = 10 mAs ... 1000 mAs Rotation time: $T_{rot} = 0.25 \dots 0.5$ s Simultaneously acquired slices: $M = 16 \dots 320$ Table increment per rotation: $d = 1 \dots 183$ mm Scan speed: up to 73 cm/s Temporal resolution: 50 ... 250 ms

Siemens Vectron

Toshiba Megacool Vi

Demands on the Mechanical Design

- Continuous data acquisition (spiral, fluoro, dynamic, ...)
- Able to withstand very fast rotation
 - Centrifugal acceleration at 550 mm with 0.5 s: a = 9 g
 - with 0.4 s: *a* = 14 *g* with 0.3 s: *a* = 25 *g*
 - with 0.2 s: *a* = 55 *g*
- Mechanical accuracy better than 0.1 mm
- Compact and robust design
- Short installation times
- Long service intervals
- Low cost

Data courtesy of Schleifring GmbH, Fürstenfeldbruck, Germany and of rsna2011.rsna.org/exbData/1678/docs/Gantry_Subsystem.pdf

Demands on X-Ray Sources

- Tube voltages from 70 to 150 kV in steps of 10 kV
- High instantaneous power levels (typ. 50 to 120 kW)
- High tube currents at low kV
- High continuous power levels (typ. > 5 kW)
- High cooling rates (typ. > 1 MHU/minute)
- High tube current variation (low inertia)
- Must withstand centrifugal forces
- Compact and robust design

Tube Technology

conventional tube (rotating anode, helical wire emitter)

high performance tube (rotating cathode, anode + envelope, flat emitter)

Performix HDw (GE)

iMRC (Philips)

Straton (Siemens) Vectron (Siemens)

Straton vs. Vectron at all kV

Tube Voltage 80 kV

Tube Voltage 120 kV

Somatom Force: Ultra Low Dose Lung Imaging

- Atypical pneumonia in inspiration and expiration
- Turbo Flash mode, 737 mm/s, 100 kV Sn
- DLP = 7 mGy·cm \approx 0.1 mSv per scan

Demands on CT Detector Technology

- Available as multi-row arrays
- Very fast sampling (typ. 300 μs)
- Favourable temporal characteristics (decay time < 10 μs)
- High absorption efficiency
- High geometrical efficiency
- High count rate (up to 10⁹ cps^{*})
- Adequate dynamic range (at least 20 bit)

* in the order of 10⁵ counts per reading and 10⁴ readings per second

Detector Technology

Photo courtesy of Siemens Healthcare, Forchheim, Germany

modular and 2D tileable, 1D anti-scatter grid, modules arranged on the surface of a cylinder segment (Photo courtesy by Siemens)

"Nano-panel detectors", modular and 2D tilable, focussed 2D anti scatter grid (Photo courtesy by Philips)

Premium Systems 2014-2016

CT-System	Vendor	Configuration	Collimation	Cone	Rotation	Max. Power
Revolution CT	GE	256 × 0.625 mm GemStone Clarity	160 mm	15°	0.28 s	103 kW Performix HDw
Brilliance ICT	ance ICT Philips 2 · 128 × 0.6 NanoPane		80 mm	7.7°	0.27 s	120 kW iMRC
IQon	Philips	2 · 64 × 0.625 mm NanoPanel Prism	40 mm	3.9°	0.27 s	120 kW iMRC
Definition Edge	Siemens	2 · 64 × 0.6 mm Stellar	38.4 mm	3.7°	0.28 s	100 kW Straton
Definition Flash	Siemens	2 · 2 · 64 × 0.6 mm Stellar	38.4 mm	3.7°	0.28 s	2 · 100 kW Straton
Somatom Force	Siemens	2 · 2 · 96 × 0.6 mm Stellar	57.6 mm	5.5°	0.25 s	2 · 120 kW Vectron
Aquilion ONE Vision	Toshiba	320 × 0.5 mm Quantum	160 mm	15°	0.275 s	100 kW MegaCool Vi

"Stellar detector", modular and 2D tilable, focussed 1D anti scatter grid (Photo courtesy by Siemens)

- Anti-scatter grids are aligned to the detector pixels
- Anti-scatter grids reject scattered radiation
- Detector pixels are of about 1.2 mm size
- Detector pixels are structured, reflective coating maximizes light usage and minimizes cross-talk
- Thick scintillators improve dose usage
- Gd₂O₂S is a high density scintillator with favourable decay times
- Individual electronics, fast read-out (5 kHz)
- Very high dynamic range (10⁷) can be realized

- Anti-scatter grids are not aligned to the detector pixels
- The benefit of anti-scatter grids is unclear
- Detector pixels are of about 0.2 mm size
- Detector pixels are unstructured, light scatters to neighboring pixels, significant cross-talk
- Thick scintillators decrease spatial resolution
- Csl grows columnar and suppresses light scatter to some extent
- Row-wise readout is rather slow (25 Hz)
- Low dynamic range (<10³), long read-out paths

Η

Primary intensity: I_P Scatter intensity: I_S Primary transmission: $T_P < 1$, e.g. 75% Scatter transmisstion: $T_S > 0$, e.g. 30%

No grid: $T_P = T_S = 1$ Ideal grid: $T_P = 1$, $T_S = 0$

 $T_{\rm S}I_{\rm S}$

Flat detector grids. Drawn to grid ratio 4:1 and infinite focus.

 $T_{\mathsf{P}}I_{\mathsf{P}}$

To Grid or not to Grid?

• Only primary counts for the signal, but primary and scatter count for noise. Thus,

$$SNR = \frac{T_P I_P}{\sqrt{T_P I_P + T_S I_S}}$$

SNR improvement factor (SNR with grid / SNR no grid)

$$SNR_{if} = T_{P} \frac{\sqrt{I_{P} + I_{S}}}{\sqrt{T_{P}I_{P} + T_{S}I_{S}}}$$

• The case $T_{\rm S}$ = 0 is interesting and yields $SNR_{\rm if} \leq \sqrt{T_{\rm P}}\sqrt{1 + SPR}$

with SPR being the scatter-to-primary ratio.

- Use a grid only for cases with $SNR_{if} \ge 1$.
- Additional scatter correction algorithms are to be used complementary and not as an alternative to grids.

Detector Technology

Clinical CT Detector

Flat Detector

Sensor Dose Efficiency

	Clinical CT (120 kV)		Flat Detector CT (120 kV)			Photon Counting CT (120 kV)			
Material	Gd ₂ O ₂ S			Csl			CdTe		
Density	7.44 g/cm ³		4.5 g/cm ³		5.85 g/cm ³				
Thickness	1.4 mm			0.6 mm			1.0 mm		
Manufacturer	Siemens			Varian			Dectris		
Water Layer	0 cm	20 cm	40 cm	0 cm	20 cm	40 cm	0 cm	20 cm	40 cm
Photons absorbed	96.2%	92 7%	20.8%	73.5%	59.220	JC.0%	88.6%	77.9%	70.4%
Energy absorbed	94.3%	90.7%	87.9%	66.4%	53.9%	46.6%	83.2%	73.0%	66.1%

Absorption values are relative to a detector of infinite thickness.

The energy absorption coefficient μ_{en} was used to estimate the absorption values.

X-Ray Exposure Dynamic Range D

- **D** = saturation exposure / quantum-limited exposure
 - Saturation exposure N_{max} : Exposure where the detector runs into saturation
 - Quantum-limited exposure N_{min} : Exposure where the x-ray quantum noise equals the detector's electronic noise.
- Measurements¹
 - Saturation signal: Increase exposure until you obtain $E(S_{max})$ in the offset-corrected reading.
 - Relation $S = k \cdot N$: Evaluate an offset-corrected medium level exposure to obtain a pair of values $Var(S_{med})$ and $E(S_{med})$. Now, use the relation $Var(N_{med}) = E(N_{med})$ with $Var(S_{med}) = k^2 \cdot Var(N_{med})$ and $E(S_{med}) = k \cdot E(N_{med})$ to find $k = Var(S_{med}) / E(S_{med})$.
 - Electronic noise: Determine $Var(S_{min})$ from the subtraction of two dark images.

 $D = \frac{\mathrm{E}(N_{\mathrm{max}})}{\mathrm{E}(N_{\mathrm{min}})} = \frac{\mathrm{E}(S_{\mathrm{max}})/k}{\mathrm{Var}(S_{\mathrm{min}})/k^2} = \frac{\mathrm{E}(S_{\mathrm{max}})\mathrm{Var}(S_{\mathrm{med}})}{\mathrm{E}(S_{\mathrm{med}})\mathrm{Var}(S_{\mathrm{min}})}$

• X-ray exposure dynamic range

¹Instead of doing this very simple procedure one may want to use statistically optimal estimates. One may use many readings, and many exposure levels. One may further determine *D* on a pixel-by-pixel basis.

Dynamic Range in Flat Detectors

	Saturation-to-noise range			X-ray exposure range			Digital ra	nnge	
	Electronic	Saturation	Dynamic	Quantum	Saturation	Dyr mie	Eff. b.*	Quantization	Eff. bit
	noise	signal	range	limited	exposure	inge	depth	range	depth
	(ADU)	(ADU)		exposure	(µR)		(bits)		(bits)
			_	(µR)					
No binning, gain 2	A1	B1	B1/A1	A2	B2	C2=B2/A2	D2=lb(C2)	B1:1	lb(B1)
Dynamic gain	5.32	80500	15100	2.75	3550	1291	10.3	80500:1	16.3
switching									
0.5 pF fixed	5.32	14500	2700	2.75	595	216	7.8	14500:1	13.8
4 pF fixed	3.57	14800	4150	35.7	4200	118	6.9	14800:1	13.8
<u>2x2 binning, gain 1</u>									
Dual gain readout	4.33	80100	18500	1.00	1800	1800	10.8	80100:1	16.3
Dynamic gain	4.37	84200	19300	1.03	2062	2002	11.0	84200:1	16.4
switching									
0.5 pF fixed	4.37	14300	3300	1.03	311	302	8.2	14300:1	13.8
4 pF fixed	3.14	14800	4700	15.6	2104	135	7.1	14800:1	13.8
0.5 pF fixed, gain 2	7.25	12900	1700	0.71	125	176	7.5	12900:1	13.6
(fluoroscopy mode)									

Table 2 4030CB dynamic range in available imaging modes

A2 is defined as the exposure when Ouar LamNoise=ElectronicNoise.

$$D = \frac{80500/k}{5.32^2/k^2} = 1291 \quad \text{if} \quad k = 0.45$$

Table taken from [Roos et al. "Multiple gain ranging readout method to extend the dynamic range of amorphous silicon flat panel imagers," *SPIE Medical Imaging Proc.*, vol. 5368, pp. 139-149, 2004]. Additional values were added, for convenience.

Dynamic Range Required for Diagnostic Image Quality

- Soft tissue $\mu = 0.0192/\text{mm}$ object of diameter *D* between $D_{\text{min}} = 200 \text{ mm}$ and $D_{\text{max}} = 500 \text{ mm}$ with a lesion of diameter d = 5 mm and contrast $\delta = 5 \text{ HU} = 0.005$.
- Number of photons to be registered at the detector: $I(D, \delta d) = I_0 e^{-\mu D} - \mu \delta d$
- Minimal signal difference to be detected:

 $I(D_{\max}, \delta d) - I(D_{\max}, 0) \approx \mu \delta dI(D_{\max}, 0)$

Maximum signal to be detected:

 $I(D_{\min},0)$

• Thus, the dynamic range required in diagnostic CT is in the order of $\frac{I(D_{\min}, 0)}{\mu \delta d I(D_{\max}, 0)} \approx 10^{6} \approx 2^{20}$

Clinical CT vs. Flat Detector CT

Clinical CT, Standard Kernel C = 0 HU, W = 700 HU

Flat Detector CT, 2×2 Binning

Medium contrast phantom

Clinical CT vs. Flat Detector CT

Clinical CT, Standard Kernel

Flat Detector CT, 2×2 Binning

Clinical CT vs. FD-CT

Cone-Beam Artifacts

Multi-Threaded CT Scanners and Dual-Source-CT

Siemens SOMATOM Definition Flash dual source cone-beam spiral CT scanner

Dual Source CT = Best Possible Cardiac CT

- Extremely high temporal resolution
- Nearly free of motion artifacts

dual source CT, 330 ms rotation, partial scan reconstruction, 83 ms temporal resolution

Data courtesy of Stephan Achenbach

stole

(contraction)

Dual Source CT = Best Possible Dual Energy CT

- Tube currents can be selected and modulated for each thread independently
- Prefiltration can be optimized for each thread independently
- Optimal sampling

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander-University Erlangen-Nürnberg

Clinical vs. Flat Detector CT

	Clinical CT (MDCT)	Flat Detector CT (CBCT)
Spatial resolution	0.5 mm	0.2 mm
Contrast	3 HU	30 HU
Dynamic range	≈ 20 bit	≈ 10 bit
Dose efficiency	≈ 90%	≈ 50%
Lowest rotation time	0.25 s	3 s
Temporal resolution	0.07 s	3 s
Frame rate	≈ 5000 fps	≈ 25 fps
X-ray power	100 – 120 kW	5 – 25 kW
Bow tie	optimized for patient	optimized for detector
AEC (for mAs and kV)	optimized for patient	optimized for detector
Advanced dose reduction techniques	IR, DOM, task-specific kV, organ and ECG specific AEC, dynamic collimation,	few, if any

Thank You!

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.