Deep Learning-based Iterative Reconstruction for Field of View Extension in Dual-Source Dual-Energy CT

Joscha Maier¹, Julien Erath³, Stefan Sawall^{1,2}, Eric Fournié³, Karl Stierstorfer³, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-Universität, Heidelberg, Germany ³Siemens Healthineers, Forchheim, Germany

Motivation

Reconstruction A

Reconstruction B^{*}

- In dual-source CT, the field of measurement (FOM) of the second source-detector pair is often limited by technical constraints.
- Dual-energy information is only available within the small FOM.
- Deep learning-based iterative reconstruction to recover missing information.

*Note: The reconstruction was performed using a custom reconstruction software. The vendor's reconstruction software would clip the reconstruction to the small FOM.

Prior Work

[1] D. Lee et al., "Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure", *Phys. Med. Biol.*, 2019.
[2] Y. Liao et al., "Pseudo dual energy CT imaging using deep learning-based framework: basic material estimation", *SPIE*, 2018.
[3] W. Zhao et al., "A deep learning approach for dual-energy CT imaging using a single-energy CT data", *Fully 3D*, 2019.
[4] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, "Generation of brain dual-energy CT from single-energy CT using deep learning", *J. Digit. Imaging*, 2021.
[5] T. Lyu et al., "Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network", *Med. Img. Anal.*, 2021.
[6] Y. Li et al., "Deep-En-Chroma: mining the spectral fingerprints in single-kV CT acquisitions using energy integration detectors", *SPIE*, 2022.
[7] D. P. Clark et al., "Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography", *Med. Phys.*, 2020.
[9] L. Yao et al., "Leveraging deep generative model for direct energy-resolving CT imaging via existing energy-integrating CT images", *SPIE*, 2020.

Single-Energy Mappings

Input to network

Prediction

Error w.r.t. ground truth

150 kV to 70 kV mapping

C = 0 HU, W = 1000 HU

C = 0 HU, W = 300 HU

Single-Energy Mappings Out-of-distribution samples

Input to network

Prediction

Error w.r.t. ground truth

150 kV to 70 kV mapping

C = 0 HU, W = 1000 HU

C = 0 HU, W = 300 HU

Single-Energy Mapping

Proposed Approach

Make use of limited angle information outside small FOM to learn a more reliable mapping.

Training Data Generation Prior images

 \rightarrow Forward projection of prior images to generate synthetic raw data.

Results Simulated data

Input, 150 kV

Ground truth, 70 kV

Prediction - GT

C = 0 HU, W = 1000 HU C = 0 HU, W = 400 HU

C = 0 HU, W = 1000 HU

C = 0 HU, W = 300 HUCKTZ.

Results Simulated data

Input, 70 kV

Ground truth, 150 kV

Prediction - GT

C = 0 HU, W = 1000 HU C = 0 HU, W = 400 HU

C = 0 HU, W = 1000 HU

C = 0 HU, W = 300 HUCKTZ

Results Simulated data

Input, 150 kV

Ground truth, 70 kV

Prediction - GT

C = 0 HU, W = 1000 HU C = 0 HU, W = 400 HU

C = 0 HU, W = 1000 HU

C = 0 HU, W = 300 HUCKTZ.

Measurements Siemens SOMATOM Definition Flash

140 kV Image

80 kV Image

Measurements

Siemens SOMATOM Definition Flash: Reference measurement

Results **Siemens SOMATOM Definition Flash**

		ROI	CT #	Error
80 kV reference	Prediction	1	-43 HU	-9 HU
	1	2	853 HU	3 HU
• •		3	559 HU	10 HU
•	• 3	4	252 HU	-2 HU
•		5	72 HU	-12 HU
		6	10 HU	-12 HU
		7	-2 HU	-3 HU
		8	12 HU	13 HU
		9	-5 HU	7 HU
		10	977 HU	11 HU
		11	684 HU	20 HU
•		12	198 HU	-15 HU
• •	• •	13	61 HU	-4 HU
		14	4 HU	-3 HU
		15	-3 HU	6 HU

C = 0 HU, W = 1400 HU

-1 HU

16

-27 HU

Conclusions

- Proposed approach is able to provide accurate dualenergy information for the entire FOM.
- The current training strategy allows to have one network for any tube voltage combination.
- Iterative application of the proposed approach may improve the quality of the prediction, especially for out-of-distribution samples.

Thank You!

This presentation will soon be available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

