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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 270×190×3 pixels
e.g.

e.g. 1 label
e.g. Milan Cathedral

Output:Input:
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Convolutional Neural Network (CNN)

• Replace dense W in                                    by a sparse 
matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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Generative Adversarial Network1

(GAN)
• Useful, if no direct ground truth (GT) is available, the 

training data are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1Goodfellow et al. 2014
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Generative Adversarial Network 
(GAN)

• Typical loss function and minimax game:

• Conditional GAN1

– Conditinal GANs sample the generator input x not from a uniform 
distribution but  from a conditional distribution, e.g. noisy CT images.

– Need some measure to ensure similarity to input distribution (e.g. 
pixelwise loss added to the minimax loss function) 

• Cycle GAN2

– Two GANs (X → Y and Y → X)

– Demand cyclic consistency, i.e.
x = GX(GY(x)) and y = GY(GX(x))

1Isola et al. 2017
2Zhu et al., 2017

X Y

GY

GX

DYDX
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Outline

1. Making up data

2. Noise removal

3. Replacement of lengthy computations

4. Image reconstruction
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Part 1:

Making up Data
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Limited Angle Example

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. 
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.

GT FBP (150°) CNN
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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Junyoung Park, Donghwi Hwang, Kyeong Yun Kim, Seung Kwan Kang, Yu Kyeong Kim and Jae Sung Lee. Computed 
tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63: 145011, 2018

Resolution Improvement Example
• 2D U-net to converts 5 mm thick images into 1 mm ones.

• E.g. to “replace a scanning protocol for a 1 mm slice with 
a 5 mm protocol”. 5 mm image 1 mm GTRL deconv. U-net
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Part 2:

Noise Removal
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Noise Removal Example 1

• 3-layer CNN uses low dose and corresponding 
normal dose image patches for training

Normal dose Low dose ASD-POCS

KSVD BM3D 3-Layer CNN

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional 
neural network. Biomedical Optics Express 8(2):278381, February 2017.
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Noise Removal Example 2
• Task: Reduce noise from low dose CT images.

• A conditional generative adversarial networks (GAN) is used

• Generator G: 
– 3D CNN that operates on small cardiac CT sub volumes

– Seven 3×3×3 convolutional layers yielding a receptive field of 15×15×15 
voxels for each destination voxel

– Depths (features) from 32 to 128

– Batch norm only in the hidden layers

– Subtracting skip connection

• Discriminator D:
– Sees either routine dose image or a 

generator-denoised low dose image 

– Two 3×3×3 layers followed by several
3×3 layers with varying strides

– Feedback from D prevents smoothing.

• Training:
– Unenhanced (why?) patient data acquired 

with Philips Briliance iCT 256 at 120 kV.

– Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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iDose level 3 reconstruction (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Denoised low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Normal dose image (0.9 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Noise Removal Example 3

• Architecture based on state-of-the art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Noise Removal Example 4

Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT. 
Phys. Med. Biol. 63:215004, 2018.
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Noise Removal Example 5

• ECG-based TCM yields cardiac 
phases with high noise. 

• Train a cycle GAN that learns from the low noise 
phases to remove noise in the high noise phases.

• 50 patient cases
used for training.

• Nice results!

E. Kang, J.C. Ye et al. Cycle-consistent adversarial denoising network for multiphase 
coronary CT angiography. Med. Phys. 46(2), February 2019.

A = high noise
B = low noise
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• Based on a deep CNN

• Trained to restore low-dose CT data to match the 
properties of FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a 
high fidelity training target

Noise Removal Example 6
Canon‘s AiCE

Information taken from https://global.medical.canon/products/computed-tomography/aice_dlr
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Images taken from https://global.medical.canon/products/computed-tomography/aice_dlr

MK1
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MK1 S. Auch das PPT (bzw. PDF) DeepLearningReconstructionInThoracicCT_RSNA2018_PatrikRogallavon Patrick Roalla.

Laut Patrik wird AiCE auf FIRST-Daten trainiert. Diese sind aber nicht auf Low-Dose-Bilder angewendet, sondern auf High-Dose-Bilder. Weil 

Anwendung von FIRST auf Low-Dose-Bilder würde zu einer Glättung der Kanten führen. 

Also macht man HigherDose=FIRST(HighDose) und AddNoise(HighDose)=LowDose und trainiert das Netz, so dass es LowDose in HigherDose 

umrechnen kann. 

Angeblich werden sogar zwei unterschiedliche Rekons kombiniert: eine für Lunge, ein für Weichteile.
Prof. Dr. Marc Kachelrieß; 30.11.2018
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Image courtesy of Dr. Patrik Rogalla, Toronto, Canada

AIDR (body kernel) AIDR (lung kernel)

FIRST (body kernel) FIRST (lung kernel)

AiCE

C = 40 HU, W = 400 HU
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Image courtesy of Dr. Patrik Rogalla, Toronto, Canada

AIDR (body kernel) AIDR (lung kernel)

FIRST (body kernel) FIRST (lung kernel)

AiCE

C = -400 HU, W = 1600 HU



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGy⋅cm
Deff = 0.35 mSv
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Part 3: 

Replacement of Lengthy Computations
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Empirical Shading Correction:
ScatterNet

• Net to convert CBCT log (why?) rawdata into artifact-free data.

• Net architecture:
– Small receptive field spectrum converter block adapts the attenuation values.

– Residual U-Net then follows to account for scatter.

• Pixel-wise loss function comparing the corrected CBCT projections 
with those of the reference shading correction method.

• Reference shading correction method:
– Use data from a clinical CT scan as an artifact-free prior.

– Intensity domain frequency split between planning CT and CBCT:

» Deformably register planning CT onto CBCT and forward project and 
exponentiate to obtain “ideal” intensity data

» Scale CBCT intensities to match the prior CT intensities

» Corrected intensities = LP(forward proj. CT)+HP(scaled uncorr. CBCT)

• ScatterNet replaces the previous correction method and thus 
speeds up computation and does not make use of the planning CT.

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018.
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Spectrum 
converter block

ScatterNet

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018.
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Deep Scatter Estimation
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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Monte Carlo

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation
Deep Scatter 

Estimation
Ground Truth

D
if

fe
re

n
c
e
 t

o
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d

e
a
l 

s
im

u
la

ti
o

n
C

T
 R

e
c
o
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s
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u
c
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o
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation

Deep Scatter 

Estimation
Slit Scan

D
if

fe
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t 

s
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n

C
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e
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n
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u
c
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o
n

C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Truncated DSE1,2

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

1J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018.
2J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.
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Does DSE Generalize
to Different Anatomical Regions? 

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.

DSE Head Thorax Abdomen

Head 1.2 21.1 32.7

Thorax 8.8 1.5 9.1

Abdomen 11.9 10.9 1.3

All data 1.8 1.4 1.4

KSE Head Thorax Abdomen

Head 14.5 26.8 32.5

Thorax 16.2 18.5 19.4

Abdomen 16.8 22.1 17.8

All data 14.9 20.5 19.3

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV, 
40 cm FOM

(shifted detector)

Abdomen, 140 kV,
22 cm FOM

Abdomen, 140 kV, 
40 cm FOM

(shifted detector)

C = 0 HU
W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM



Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV, 
40 cm FOM

(shifted detector)

Abdomen, 140 kV,
22 cm FOM

Abdomen, 140 kV, 
40 cm FOM

(shifted detector)

C = 0 HU
W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM
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Conclusions on DSE

• DSE needs about 20 ms per projection. It is a fast and 
accurate alternative to Monte Carlo (MC) simulations.

• DSE outperforms kernel-based approaches in terms 
of accuracy and speed.

• Interesting observations
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE cannot accurately estimate scatter from a primary only image.

– DSE may thus outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.
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C = truncated PE cone
(diameter from 10 cm to 28 cm)

F = rectangular PE frustum
(from 35 cm × 10 cm to 10 cm × 5 cm)

R = Teflon rod
(4 cm diameter)

Calibration phantom measured in about 20 
configurations (translate, tilt, shift, rotate) to
collect sufficiently many data for the neural
net to be able to reliably deduce primary from
scatter.

Calibration Phantom (one configuration)

Test Phantom (water precorrected)

Ground truth (no scatter) Uncorrected (with scatter) mbDSE-corrected

Cross-section
at z = -15 cm

Cross-section
at z = +15 cm

C = 0 HU, W = 500 HU

-751 HU

49 HU

0 HU

-736 HU

-53 HU

-140 HU

-751 HU

50 HU

-1 HU

DSE without Monte Carlo

J. Erath, M. Kachelrieß et al., Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT, RSNA 2019?
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Estimation of Dose Distributions

• Useful to study dose reduction techniques
– Tube current modulation

– Prefiltration and shaped filtration

– Tube voltage settings

– …

• Useful to estimate patient dose
– Risk assessment requires segmentation of the organs (difficult)

– Often semiantropomorphic patient models take over

– The infamous k-factors that convert DLP into Deff are derived this 
way, e.g. kchest = 0.014 mSv/mGy/cm

– …

• Could be useful for patient-specific CT scan protocol 
optimization

• However: Dose estimation does not work in real time!

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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• Combine fast and accurate CT dose estimation using 
a deep convolutional neural network.

• Train the network to reproduce MC dose estimates 
given the CT image and a first-order dose estimate.

Deep Dose Estimation (DDE)

256 × 256 x 48 × 16

16 × 16 × 3 × 256

3 × 3 × 3 Convolution (stride = 1), ReLU 3 × 3 × 3 Convolution (stride = 2), ReLU 2 × 2 × 2 Upsampling1 × 1 × 1 Convolution (stride = 1), ReLU

Depth concatenate

128 × 128 x 24 × 32

64 × 64 x 12 × 64

32 × 32 x 6 × 128

2-channel input:

CT image

MC-dose1

target:

1st order dose

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!

1M. Baer, M. Kachelrieß. 
Phys. Med. Biol. 57, 2012. 
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First-Order Dose Estimate 

• DDE network needs information about the tube 
current, the tube voltage, shaped filters etc., which is 
encoded in the first-order dose estimate.

• First order dose-estimate in a voxel with volume V 
and mass m at position r :

Emission characteristic 
of the x-ray source 

(including shaped filters)

Interaction probability for 
photo effect (i = PE) and 
Compton scattering (i = 

CS)

Energy deposition by 
photo effect (i = PE) and 
Compton scattering (i = 

CS)

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Training and Validation
• Simulation of 1440 circular dual-source

CT scans (64×0.6 mm, FOMA = 50 cm, 
FOMB = 32 cm) of thorax, abdomen, 
and pelvis using 12 different patients.

• Simulation with and without bowtie.

• No data augmentation

• Reconstruction on a 512×512×96 grid
with 1 mm voxel size, followed by 2×2×2
binning for dose estimation.

• 9 patients were used for training and 3 for testing.

• DDE was trained for 300 epochs on an Nvidia Quadro 
P6000 GPU using a mean absolute error pixel-wise 
loss, the Adam optimizer, and a batch size of 4.

• The same weights and biases were used for all cases.

Tube A

Tube B

1440 = 12 patients × 20 z-positions × 6 modes (A, A+bowtie, A+bowtie+TCM, B, B+Bowtie, B+bowtie+TCM) 
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Results
Thorax, tube A, 120 kV, with bowtie

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
Thorax, tube A, 120 kV, no bowtie

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
Thorax, tube B, 120 kV, no bowtie

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
Abdomen, tube A, 120 kV, with bowtie

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
Abdomen, tube A, 120 kV, no bowtie

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
Pelvis, tube A, 120 kV, with bowtie
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Results
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Results
Pelvis, tube B, 120 kV, no bowtie
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network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Conclusions on DDE

• DDE is able to derive dose estimates with almost 
similar accuracy as MC (average deviation: 4.6 %).

• DDE can provide accurate dose predictions 
– for sequence scans

– for partial scans (less than 360°)

– for spiral scans

– for different tube voltages 

– for scans with and without bowtie filtration

– for scans with tube current modulation

– across anatomical regions

• In practice it may therefore be not necessary to 
perform separate training runs for these cases.

• Thus, accurate real-time patient dose estimation may 
become feasible with DDE.

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Part 4:

Image Reconstruction
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Often “Just” Image Restoration

• Speeding up iterative reconstruction by training a 
CNN to convert an FBP image into an iterative image

– Canon‘s AiCE algorithm

– GE‘s True Fidelity algorithm

– plus a few more algorithms proposed in the literature

• Noise reduction by training, e.g. a mapping from low 
dose to high dose images

– many examples in the literature, some in this presentation

• Artifact reduction in image domain
– many examples in the literature, one shown in this presentation

• …
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Sometimes “Real” Image 
Reconstruction

• Networks employing data consistency layers

• Networks including backprojection layers

• Learning of backprojectors

• End-to-end training from sinogram to image

• Unrolled iterative reconstruction with learned priors

• …
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Variational Network-Based
Image Reconstruction

E. Kobler, R. Otazo et al. Variational network learning for low-dose CT. Proc. 5th CT-Meeting:430-434, 2018.

Highly simplified 
example. Varnets 
work for a much 

wider class of cost 
functions whose NN-
based minimization is 

motivated by the 
primal dual approach. 



full dose 1/4 dose 1/6 dose

tube current reduction
varnet

sparse views
varnet

sparse views
varnet

sparse views
TV

tube current reduction
SAFIRE



Conclusions on Deep CT

• Machine learning will play a significant role
in CT optimization.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers and variational networks with rawdata 
access may ensure that the information that is made up is 
consistent with the measured data.

– …



Thank You!

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


