Deep Learning-Based Coronary Artery Motion Estimation and Compensation for Iterative Cardiac CT Reconstructions

Joscha Maier¹, Sergej Lebedev ^{1,2,3}, Julien Erath^{1,2,3}, Elias Eulig^{1,2}, Stefan Sawall^{1,2}, Eric Fournié³, Karl Stierstorfer³, Michael Lell⁴ and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-Universität, Heidelberg, Germany ³Siemens Healthineers, Forchheim, Germany ⁴Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany

Motivation

- Cardiac CT imaging is routinely used for the diagnosis of cardiovascular diseases, especially those related to coronary arteries.
- Imaging of coronary arteries places high demands on the spatial and temporal resolution of the CT reconstruction.
- Motion artifacts and image noise may impair the diagnostic value of the CT examination.

CTCA image of the right coronary artery¹

CTCA image of the left coronary artery²

 W. B. Meijboom et al., "64-Slice Computed Tomography Coronary Angiography in Patients With High, Intermediate, or Low Pretest Probability of Significant Coronary Artery Disease", J. Am. Coll. Cardiol. 50 (15): 1469–1475 (2007).
 R. Leta et al., "Ruling Out Coronary Artery Disease with Noninvasive Coronary Multidetector CT Angiography before Noncoronary Cardiovascular Surgery", Heart 258 (2) (2011)

Motivation

C = 0 HU, W = 1200 HU

Motion artifacts

High noise levels

Table 3: Reason for $\ensuremath{\mathsf{FFR}_{\mathsf{cr}}}$ Rejection in the ADVANCE Registry and Clinical Cohort

	$\mathrm{FFR}_{\mathrm{CT}}$ Rejected*		
Reason for Rejection	ADVANCE Registry $(n = 80)$	Clinical Cohort (<i>n</i> = 892)	
Inadequate image quality [†]			
Blooming	4 (5.0)	29 (3.0)	
Clipped structure	ч (Э.О)	39 (4.3)	
Motion artifacts	63 (78.0)	729 (81.4)	
Image noise	2 (2.5)	198 (22.1)	
Inappropriate submission			
Stent or previous coronary artery bypass graft	5 (6.2)	116 (13.0)	
present	2 (2 5)	20 (2.2)	
Cardiac hardware present	2 (2.5)	29 (3.2)	

The rejection rate was 892 of 10416 cases submitted

* G. Pontone et al., "Determinants of Rejection Rate for Coronary CT Angiography Fractional Flow Reserve Analysis", *Radiology*, 292(3), 597–605 (2019)

*

Motivation

Motion artifacts

High noise levels

Table 3: Reason for FFR_{ct} Rejection in the ADVANCE **Registry and Clinical Cohort**

 FFR_{CT} Rejected* ADVANCE Clinical Cohort Reason for Rejection Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* Inadequate image quality* Blooming 4 (5.0) 29 (3.0) Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality* <li< th=""><th></th><th></th><th></th><th></th></li<>				
 ADVANCE Clinical Cohort Registry (n = 80) (n = 892) Advance Registry (n = 80) (n = 892) Inadequate image quality[†] Blooming 4 (5.0) 29 (3.0) Clinical de constraints Advance Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality[†] Blooming 4 (5.0) 29 (3.0) Clinical de constraints Advance Clinical Cohort Registry (n = 80) (n = 892) Inadequate image quality[†] Blooming 2 (2.5) 198 (22.7) Inage noise 2 (2.5) 198 (22.7) Inage noise 2 (2.5) 198 (22.7) Inage noise 2 (2.5) 198 (22.7) 	and we want to the second second		FFR _{CT} Rejected*	
 Inadequate image quality[†] Blooming 4 (5.0) 29 (3.0) Climation compensation to 2 (2.5) 19 (2.1) 20 (4.2) 20 (2.1) 20 (2.1) 20		Reason for Rejection	ADVANCE Registry (<i>n</i> = 80)	Clinical Cohort $(n = 892)$
 Deep learning-based motion compensation to remove motion artifacts. Herative reconstruction (Siemens ADMIRE) to reduce noise. 		Inadequate image quality [†]		
 Deep learning-based motion compensation to remove motion artifacts. Iterative reconstruction (Siemens ADMIRE) to reduce noise. 		Blooming	4 (5.0)	29 (3.0)
 Deep learning-based motion compensation to remove motion artifacts. Iterative reconstruction (Siemens ADMIRE) to reduce noise. 			(()	20 ((2)
remove motion artifacts. →Iterative reconstruction (Siemens ADMIRE) to reduce noise.	→Deep learning-based mot	ion compen	sation t	0 9 (81.4)
→Iterative reconstruction (Siemens ADMIRE) to reduce noise.	remove motion artifacts.			
reduce noise. present Cardiac hardware present 2 (2.5) 29 (3.2)	→Iterative reconstruction (Siemens AD	MIRE) to	016 (15.0)
Caluac haltware present $2(2,3)$ $23(3,2)$	reduce noise.			

The rejection rate was 892 of 10416 cases submitted

* G. Pontone et al., "Determinants of Rejection Rate for Coronary CT Angiography Fractional Flow Reserve Analysis", *Radiology*, 292(3), 597–605 (2019)

*

Animated rotation time = 100 × real rotation time

dkfz₅

ho Motion vector field $\, {f s}_1({f r})$

Apply motion vector fields (MVFs) to partial angle reconstructions

Prior work:

[1] S. Kim et al., "Cardiac motion correction based on partial angle reconstructed images in x-ray CT", Med. Phys. 42 (5): 2560–2571 (2015).

[2] J. Hahn et al., "Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data", Med. Phys. 44 (11): 5795–5813 (2017).

[3] S. Kim et al., "Cardiac motion correction for helical CT scan with an ordinary pitch", IEEE TMI 37 (7): 1587–1596 (2018).

→ Limitation: Challenging / timeconsuming optimization

Reinsertion of patch into PARs centered Neural network to predict parameters of a motion model initial reconstruction around coronary artery Fully $\mathbf{x} = \mathbf{s}_{0,x}$ connected $a = s_{0,y}$ $\mathbf{x} = s_{0,z}$ $\mathbf{s} = \mathbf{s}_{2,x}$ $\grave{\mathbf{x}} \equiv s_{2,u}$ 📙 3 × 3 × 3 Convolution, Batch norm, ReLU 🌔 2 × 2 × 2 Max pooling 🍃 Flatten 🛛 🗙 Dropout (25 %) **Spatial** transformer

> Application of the motion model to the PARs via a spatial transformer¹

[1] M. Jaderberg et al., "Spatial transformer networks", NIPS 2015: 2017–2025 (2015).

dkfz,

Reinsertion of patch into PARs centered Neural network to predict parameters of a motion model initial reconstruction around coronary artery Fully $\mathbf{x} = \mathbf{s}_{0,x}$ connected $a = s_{0,y}$ $\mathbf{x} = s_{0,z}$ $\mathbf{s} = \mathbf{s}_{2,x}$ $\grave{\mathbf{x}} \equiv s_{2,u}$ 📙 3 × 3 × 3 Convolution, Batch norm, ReLU 🌔 2 × 2 × 2 Max pooling 🍃 Flatten 🛛 🗙 Dropout (25 %) **Spatial** transformer Application of the motion model to

the PARs via a spatial transformer¹

[1] M. Jaderberg et al., "Spatial transformer networks", NIPS 2015: 2017–2025 (2015).

Training Data Generation

- Removal of coronary arteries from real CT reconstructions.
- Insertion of artificial coronary arteries with different shape, size, and contrast.
- Simulation of CT scans with coronary artery motion.

Training & Evaluation

Training for 100 epochs

- 100,000 training samples
- 80 % training data and 20 % validation data
- Loss in image domain: MSE between prediction and ideal (no motion) CT reconstruction
- Adam Optimizer
- Application to Siemens Somatom AS measurements.
- Reconstruction using FBP and an iterative reconstruction algorithm (ADMIRE).

Results

Measurements at a Siemens Somatom AS, patient 1

C = 0 HU, W = 1200 HU

Results

Measurements at a Siemens Somatom AS, patient 2

C = 0 HU, W = 1200 HU

Results

Measurements at a Siemens Somatom AS, patient 3

C = 0 HU, W = 1400 HU

Conclusions

- Deep PAMoCo enables an end-to-end training of coronary artery motion compensation using a deep neural network.
- Deep PAMoCo provides a fast (~10 s per cardiac CT scan) and efficient approach to reduce motion artifacts.
- Deep PAMoCo in combination with an iterative reconstruction may help to further improve the diagnosis of coronary artery diseases even if the corresponding CT scans are corrupted by strong motion artifacts and high noise levels.

Thank You!

This presentation will soon be available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

