Low-Dose CT: Reducing Tube Current, Number of Projections, or Both?

Achim Byl^{1,2}, Stefan Sawall^{1,2}, Magdalena Rafecas³, Christoph Hoeschen⁴, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany
²Ruprecht-Karls-University of Heidelberg, Germany
³ University of Lübeck, Lübeck, Germany
⁴ University Magdeburg, Magdeburg, Germany

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz Session M-17 (Friday), Poster III Poster 321

Aim

- Dose reduction is primary aim of CT research
 How to reduce dose without decreasing image quality?
- Two dose reduction methods are lowering the tube current or decreasing the number of projections
- A lot of research available on how to correct either low-mAs or sparse-view CT, e.g. with neural networks
- What is the best realization of low-dose CT in combination with CNN denoising?

Low-mAs vs. Sparse-View

CT Simulations

- CT images are generated by monochromatically forwardprojecting diagnostic CT scans in parallel beam geometry, and reconstructing with FBP.
- CT scans were acquired with a SOMATOM Force at 70 kV.
- Slices were filtered in *z* with a Gaussian with $\sigma = 1.5$ px.
- To simulate high-dose CT scans, Poisson noise was added to the projections (N = 512) with a photon number of 1.5×10^6 .
- Low-dose scans are simulated with a dose reduction of 5:
 - 1. $I_0 = 0.20 I_{\text{max}}, N = 512$
 - 2. $I_0 = 0.29 I_{\text{max}}, N = 342$
 - 3. $I_0 = 0.45 I_{\text{max}}, N = 229$
 - 4. $I_0 = 0.67 I_{\text{max}}, N = 153$
 - 5. $I_0 = 1.00 I_{\text{max}}, N = 102$
- same mAs product
- same network architecture
 - separately trained networks

U-Net Architecture

Network is trained separately for each scenario

K. H. Jin, et al., *IEEE Transations on Image Processing*, vol. 26, no. 9, pp. 4509–4522, 2017 P. M. Heinrich, et al., *Current Directions in Biomedical Engineering* 4, no. 1, pp. 297-300, 2018

Results

C = 0 HU, W = 500 HU, difference images: C = 0 HU, W = 100 HU **dkfz**.

Quantitative Results

Conclusions

- CNN was able to correct all forms of low-dose CT
 - Some structures better preserved in low-mAs image
- Higher numbers of projections lead to statistically significantly better image metrics
 - Physical difference is relatively small
- Need to evaluate image quality based on specific task, e.g. lesion detection
- Perform architecture search to further optimize network per noise implementation

Thank You!

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

Session M-17 (Friday), Poster III, Poster 321

Supported by the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) based on a decision of the German Bundestag. Job opportunities through DKFZ's international PhD programs or through marc.kachelriess@dkfz.de. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.