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Purpose:
Traditional energy integrating (EI) x–ray
CT detectors integrate the incident photon
energy and provide the result as signal
value. Recently, the development of a new
detector technology, which counts the
number of incident photons showed prom-
ising advancements. These photon count-
ing (PC) detectors may additionally allow
assigning each incident photon to a distinct
energy range. The availability of such
photon counting energy–selective (PCES,
figure 1) detectors offers new possibilities
to the field of material–selective CT, which
has been restricted to dual energy CT in
most cases, so far. For example, the adop-
tion of contrast agents with k-edges in the
range of a typical clinical x–ray spectrum
(figure 1) becomes interesting, because
the multiple energy measurement allows to
automatically calculate images of the exact
densities of many contrast agents. This
work extends the methods described in
reference [1] for single energy CT and in
reference [3] for dual energy CT towards
multiple energy CT, where the number B of
detected spectra and the number M of
basis materials is greater than two (figure
3). The advantage of the empirical
methods in references [1–3] and in this
work is that no knowledge of the spectral
properties of the separated materials and
of the detected spectra is required.

Materials and Methods:
We assume that the object is a linear
combination of M linearly independent
materials and that this object is measured
with B different detected spectra (figure 3).
From the intersection lengths pm and the
mass attenuation coefficient ψm of each
material m as well as the detected spec-
trum wb of each energy bin b, the polychro-
matic attenuation qb is calculated. Note
that the mass attenuation coefficient and
the detected spectra are used here for
simulations of the measurement process,
but not for the reconstruction. For the re-
construction the non-linear relationship of
qb and pm must be inverted such that we
can calculate pm when we have measured
all qb. The basic idea of the empirical
method proposed in this work, as well as in
references [1–3], is to model pm as an M-
dimensional series expansion (figure 5).
The coefficient vector c of the expansion is
calculated by minimization of the cost fun-
ction D2 (figure 6), as proposed in ref. [3].
This is done via one calibration measure-
ment, which is run with the same detected
spectra as the subsequent (or preceding)
patient measurement. In the case of more
detected spectra than linearly independent
materials (B>M), there exist several differ-
ent ways to define an M-dimensional ser-
ies expansion (figure 7). This redundancy
may be used for dose optimizations [4].

Results:
Figure 8 shows internal information on the
calibration procedure of a M=2, B=4 noise-
free simulation of the Yin Yang phantom.
The ten basis images, which contribute to
the minimization when using this particular
EMEC way, are shown on the left side.
Five other ways to perform EMEC exist in
this case. The cost function D2 (values
shown in the table) is a measure of the
calibration quality for each way.
In figure 9 we show the reconstruction
result of the phantom (M=4) defined in
figure 2. The spectral information in figure
1 was used for simulation of the measure-
ment process (B=4), but not for the recon-
struction. The reconstruction results show
very good separation of the basis materi-
als. An increase in image noise, which
mainly depends on the spectral separation
of the imaged materials and the detected
spectra, is usually observed when perform-
ing material–selective CT. Since we have
M=B, there are no redundancies in the
configuration of figure 9. In figure 10, the
CTDI phantom was simulated with M=2
(water and gadolinium), and B=4. This
configuration allows six ways to perform
EDEC and the result of each material and
each way is shown in figure 10. The figure
further shows that simply averaging the
results of each way results in increased
voxel noise because the noise of the way’s
results is correlated. In order to optimize
the dose usage the contribution of each
source to the final image’s sinogram has to
be considered on an object- and detector
pixel–dependent method, as discussed in
reference [4].

Conclusion:
A straightforward extension of the proven
and established ECC and EDEC methods
to multiple energy CT and multiple material
separation has been proposed and
successfully applied in a simulation study.
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Figure 1: Top: Mass attenuation coefficient of the
materials considered throughout this work. Bottom:
Detected spectra used for simulations.

Figure 3: This work extends the family of empirical
methods proposed earlier towards multiple spectra and
multiple materials. The methods have in common that
they do not require knowlege of spectral information.

Figure 5: For reconstruction the inverse of the
polychromatic measurement must be calculated. Here,
the inverse is modeled as series expansion where the
coefficients are determined from a calibration scan.

Figure 2: Using photon counting energy–selective
detectors, one measurement yields several CT datasets
that vary in spectral and noise properties.

Figure 4: We assume an object consisting of a number
of independent materials. Two materials are motivated
by photo–effect and Compton effect. The remaining
materials need the k-edges to be linearly independent.

Figure 6: The calibration requires one measurement of
a known calibration phantom, which contains the
desired materials, with the desired detected spectrum.

Figure 7: If the number of detected spectra exceeds the
number of independent materials, there are different
ways possible to perform the calibration. D² is a
measure of the calibration quality of each way.

Figure 8: Visualization of the calibration of a two
material reconstruction using four detector bins. There
are six ways to use two out of the four bins. The (con-
siderably varying) calibration quality D2 is specified.
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Figure 9: Results of a four material separation using
four detected spectra. As usual in material–selective
CT, high voxel noise appears in material–selective
images. Beside this, the quality of the material
separation is very high.

Figure 10: If redundancies exist in the system because
more than one way of EMEC is possible, the additional
ways can be used to optimize the dose usage. This
method is presented in reference [4].


