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Impact of dietary gut microbial
metabolites on the epigenome

Clarissa Gerhauser

Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
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Within the past decade, epigenetic mechanisms and their modulation by natu-

ral products have gained increasing interest. Dietary bioactive compounds

from various sources, including green tea, soya, fruit and berries, cruciferous

vegetables, whole grain foods, fish and others, have been shown to target

enzymes involved in epigenetic gene regulation, including DNA methyltrans-

ferases, histone acetyltransferases, deacetylases and demethylases in vitro
and in cell culture. Also, many dietary agents were shown to alter miRNA

expression. In vivo studies in animal models and humans are still limited.

Recent research has indicated that the gut microbiota and gut microbial

metabolites might be important mediators of diet–epigenome interactions.

Inter-individual differences in the gut microbiome might affect release, metab-

olism and bioavailability of dietary agents and explain variability in response

to intervention in human studies. Only a few microbial metabolites, including

folate, phenolic acids, S-(2)equol, urolithins, isothiocyanates, and short- and

long-chain fatty acids have been tested with respect to their potential to

influence epigenetic mechanisms. Considering that a complex mixture of inter-

mediary and microbial metabolites is present in human circulation, a more

systematic interdisciplinary investigation of nutri-epigenetic activities and

their impact on human health is called for.

This article is part of a discussion meeting issue ‘Frontiers in epigenetic

chemical biology’.
1. Introduction
(a) The gut microbiome: our second genome
Studies have identified large inter-individual differences in gut microbial compo-

sition, with consequences for human health [1,2]. A recent large-scale sequencing

programme of 124 individuals identified about 3.3 million non-redundant

microbial genes, derived from 576.7 gigabases of sequence [3]. Thus, the gut meta-

genome (the collective genetic information derived directly from a faecal sample

by deep sequencing) is about 150 times larger than the human genome. Eighteen

bacterial species were detected in all individuals, 57 in greater than or equal to

90% and 75 in greater than or equal to 50% of individuals [3]. A following

study revealed that based on their predominant gut bacterial communities, indi-

viduals could be grouped into three main clusters or enterotypes, namely

Bacteroides, Prevotella and Ruminococcus. Host properties such as age, body mass

index or gender did not explain the enterotypes. Rather, enterotypes seem to

differ in their choice of energy source [4]. Wu et al. [5] postulated that enterotypes

were strongly associated with long-term diets, particularly protein and animal fat

(Bacteroides) versus plant-derived carbohydrates and fibre (Prevotella). Subsequent

studies questioned the existence of distinct enterotypes [6] and instead proposed

that microbial gene richness (the number of microbial genes per individual) might

be more relevant for human health status [7,8]. Populations could be separated by

a bimodal distribution of gene counts. Low gene richness was related to overall

adiposity, insulin resistance, dyslipidaemia and an inflammatory phenotype

compared with the high gene group [7,8]. In two large metagenomics analyses
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of Dutch and Belgian populations, low microbial diversity has

been linked to consumption of high-fat whole milk, sugar-

sweetened drinks, higher total energy and carbohydrate

intake, and snacking, whereas high microbial diversity has

been associated with consumption of coffee, tea, red wine

and dark chocolate as sources of polyphenols [9,10]. Overall,

these studies indicate that the metagenomic composition can

be modified by (long-term) dietary patterns [1,2].

(b) Regulation of the epigenome
The term ‘epigenetics’ refers to modifications in gene

expression caused by heritable, but potentially reversible,

changes in DNA methylation and chromatin structure. Major

epigenetic mechanisms include DNA hyper- and hypo-

methylation [11], remodelling of the chromatin, modification

of histones by histone acetylation and methylation (among

others), and noncoding RNAs [12].

The DNA methyltransferase (DNMTs) family of enzymes

catalyses the transfer of methyl groups from S-adenosyl-L-

methionine (SAM) to DNA. In mammals, this occurs at the

5-position of cytosine (C) in the context of CpG dinucleotides,

generating 5-methylcytosine (5mC). CpG dinucleotides are not

evenly distributed in the genome: CpG-dense regions (CpG

islands or CGIs) are located in the promoter regions of genes

and are mostly unmethylated in healthy tissues, allowing

active gene transcription. Conversely, intra- and intergenic

regions have lower CpG density and are highly methylated,

thus limiting DNA accessibility and maintaining genomic stab-

ility. Focal gain in methylation at CGIs in promoter regions, for

example, of tumour suppressor genes, concomitant with global

loss of methylation (hypomethylation), especially at repetitive

sequences, is thought to be involved in the aetiology of cancer.

In contrast to irreversible genetic alterations (mutations, del-

etions, etc.), genes silenced by epigenetic modifications are

still intact and can be reactivated [13,14].

Chromatin accessibility and gene expression is controlled

by various post-translational modifications of N-terminal

histone tails, including acetylation, methylation, phosphoryl-

ation, ubiquitinylation, sumoylation and ADP ribosylation

[15,16]. Acetylation of histone tails by histone acetyltrans-

ferases (HATs) opens up the chromatin structure, allowing

transcription factors to access the DNA [17]. Histone acetyl-

ation is reversed by histone deacetylases (HDACs) that

remove histone acetyl groups by catalysing their transfer to

coenzyme A (CoA), leading to chromatin condensation

and transcriptional repression. Beside the currently known

HDACs 1–11, structurally unrelated sirtuins (SIRTs) possess

deacetylating activity, using NADþ as a cofactor [18]. Histone

lysine methylation has activating or repressive effects on gene

expression, dependent on the lysine residue that is modified by

methylation and the number of methyl groups [15]. More than

30 histone methyltransferases have been identified in humans

that transfer methyl groups from SAM to lysine residues

[19–21]. Histone methylation marks are removed by histone

lysine demethylases (HDMs), for example, by lysine-specific

demethylase 1 (LSD1) and the family of about 20 Jumonji

domain-containing (JmjC) histone demethylases [22].

Noncoding (nc) RNAs also possess a regulatory effect on

gene expression. MicroRNAs (miRNAs) are small ncRNAs of

20–22 nt that inhibit gene expression at the posttranscrip-

tional level either by imperfect base-pairing to the mRNA

30-untranslated regions to repress protein synthesis, or by

affecting mRNA stability (reviewed in [23]). Identification
and functional evaluation of long noncoding (lnc) RNAs

(greater than 200 nt) has become an additional area of

scientific interest [24,25].
2. Impact of microbial metabolites on the
epigenome

Dietary agents from various sources, including green tea,

fruit and berries, cruciferous vegetables and soya, directly

target enzymatic activities or modulate expression of enzymes

involved in epigenetic gene regulation. Therefore, they might

affect numerous biological mechanisms, including signal

transduction mediated by nuclear receptors and transcrip-

tion factors such as NF-kB, cell proliferation and cell-cycle

progression, cellular differentiation, DNA repair, apoptosis

induction, cell motility, metastasis formation and cellular

senescence (reviewed in [26–28]). Recent research has indi-

cated that the gut microbiota and gut microbial metabolites

might be important mediators of the diet–epigenome inter-

action (previously reviewed in [29–31]). The present

overview is intended to summarize recent evidence from in
vitro analyses (table 1) and in vivo investigations in rodent

models and human intervention studies (table 2).

(a) Folate and B-vitamins
Folic acid and other B-vitamins are important cofactors in ‘one

carbon metabolism’ to generate SAM for methylation reactions

[32]. Dietary sources of folate include green leafy vegetables,

asparagus, pulses, nuts, cruciferous vegetables, avocado,

papaya, etc. In a dietary intervention study with postmenopau-

sal women, altering plasma levels of folate directly influenced

lymphocyte DNA methylation levels [33]. The gut microbiota

is also involved in the metabolism of folate and B-vitamins

[63]. Selected bacteria are able to synthesize folic acid from

pteridine precursors and p-aminobenzoic acid [34]. Folate

deficiency after antibiotic use indicates that colonic folate pro-

duction can be significant [63]. In addition to folate, the gut

microbiota provides a variety of dietary energy metabolites,

such as ATP, NADþ and acetyl-CoA, which are used as

cofactors by epigenetic enzymes [35,64].

(b) Dietary polyphenols
Polyphenols from various sources, including green tea, black

raspberries (BRBs), red wine, coffee, apples, isoflavones from

soya, curcumin from curry and others, have been reported to

affect epigenetic mechanisms in vitro in enzymatic reactions

and in cell culture (reviewed in [26,27,65]). Studies in

animal models for cancer prevention or dietary interventions

in humans are limited.

(i) Isoflavones from soya
Isoflavones, such as genistein and daidzein, are cancer-

preventive phytochemicals with anti-/oestrogenic activity

found in soya and other legumes. Epidemiological studies

suggest that populations following a typical Asian diet rich in

soya products have a reduced risk for hormone-dependent can-

cers [28]. S-(–)equol, a microbial metabolite of daidzein, has

higher bioavailability and oestrogenicity than daidzein.

Metabolomic investigations have shown that approximately

one-third of the Western population and up to 65% of the
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Asian population is able to produce S-(2)equol [66,67].

Variability in gut microbiota composition or human gene poly-

morphisms, for example, in hormone receptors or hormone

binding proteins, may explain individual variability observed

in clinical studies investigating biological effects of isoflavones

[67]. During the past decade, evidence is accumulating that

soya isoflavones including the metabolite S-(2)equol affect epi-

genetic enzymes that write, read or erase epigenetic marks, and

subsequently modulate gene expression to counteract the ‘hall-

marks of cancer’ (review in [28]). In the few studies performed

in humans, gut microbial metabolism has not been systemati-

cally taken into consideration, and its influence on epigenetic

endpoints should be addressed in future investigations. In

addition, pre-clinical models should be carefully chosen to

reflect human in vivo conditions. For example, rodents very effi-

ciently convert daidzein into S-(2)equol [68]. The outcome of

investigations on soya in rodent models might, therefore, not

be generally informative for human populations.
 3:20170359
(ii) Green tea catechins
With respect to the modulation of epigenetic mechanisms, green

tea catechins (GTCs), with (2)-epigallocatechin gallate (EGCG)

as the major catechin, represent one of the best investigated

groups of polyphenols. In vitro, EGCG was shown to inhibit

the activity and expression of DNMTs and to demethylate and

re-express genes involved in cell-cycle control (p16, p21), cell sig-

nalling (RARb), WNT-signalling (WIF-1), DNA repair (MGMT,

hMLH1) and apoptosis (DAPK) (review in [65]).

Lee et al. suggested that biotransformation of catechins by

Phase II metabolic enzymes might influence the activity of

epigenetic enzymes. Catechin metabolism by the catechol-O-

methyltransferase (COMT) leads to consumption of SAM,

which is then less available for the catalytic activity of

DNA and histone methyltransferases. On the other hand,

methylation reactions by COMT produce S-adenosyl-L-

homocysteine (SAH), which is a negative feedback inhibitor

of methyltransferases [69]. Both depletion of SAM as well as

elevated levels of SAH might result in reduced levels of DNA

or histone methylation, which might consequentially influence

gene expression.

Dietary polyphenols also undergo gut microbial metab-

olism. The microbial degradation of catechins such as

epicatechin (EC) by cleavage of the O-heterocycle and dehydrox-

ylation results in the formation of phenolic acids [36,38]. In an

enzymatic in vitro assay of DNMT activity, protocatechuic acid

(at 20 and 40 mM, respectively) inhibited enzyme activity by

60–80% [39]. Waldecker et al. investigated microbial metabolites

of apple juice extracts on enzymatic HDAC activity. Half-maxi-

mal inhibitory concentrations (IC50 values) were in the range of

0.19–5.47 mM, exceeding the concentrations of phenolic acids

detected in human faecal water [40,41]. Whether these weak

in vitro inhibitory effects of phenolic acids have physiological

relevance needs to be addressed in future investigations in vivo.

GTCs have been repeatedly reported to prevent prostate

cancer in ‘TRansgenic Adenocarcinoma of Mouse Prostate’

(TRAMP) mice (summary in [65]). Morey Kinney et al. used

a genome-wide approach to test the influence of GTCs on

prostate cancer and DNA methylation in the TRAMP mouse

model. Unexpectedly, the intervention with GTCs (0.3% in

drinking water) prevented neither prostate cancer growth

nor DNA methylation in prostate, liver and gut [50]. Cur-

rently, it can only be speculated whether differences in gut
microbial populations and alterations in GTC metabolism

might explain the observed discrepancies with earlier studies.

(iii) Black raspberries
BRBs are a good source for polyphenols including ellagic acid,

quercetin glycosides and anthocyanins. Freeze-dried BRBs

have been shown to prevent oesophageal and colon cancer in

animal models by targeting carcinogen metabolism, cell pro-

liferation, inflammation, angiogenesis and apoptosis, and are

well tolerated by humans at daily doses of 45 g [70]. In a

small Phase I human dietary intervention study with 20

colon cancer patients, 60 g freeze-dried BRBs per day for a

minimum of four weeks led to reduced expression of

DNMT1 and promoter demethylation of genes involved in

the WNT-signalling pathway in tumour tissue, accompanied

by reduced expression of WNT-target proteins such as b-cate-

nin, E-cadherin and Ki67 as proliferation marker [51]. In a

subsequent Phase Ib study, the same group investigated

whether BRBs might regress rectal polyps in patients with

familial adenomatous polyposis (FAP), a genetic disease

caused by a mutation of the APC gene and characterized by

rectal polyps detectable at a young age and high risk for devel-

oping colon cancer [52]. Fourteen patients with FAP were

treated with BRBs daily for nine months. Seven patients

received BRB powder orally plus two BRB suppositories,

whereas another seven patients received suppositories

together with an oral placebo. Intervention with suppositories

was sufficient to reduce polyp number and burden at the end

of the study. Three of the 14 patients did not respond to the

intervention. In colon tissue of responders, DNMT1 expression

(tumours) and p16 promoter methylation (tumours and adja-

cent normal tissue) were significantly reduced at the end of

the study compared with baseline levels, whereas no changes

were detected in the three non-responding patients [52]. The

fact that the patients responded differently to the local effects

of BRB suppositories indicate that BRB components either are

metabolized by the gut microbiota (see Ellagitannins and uro-
lithins below) or might influence the gut microbial

composition with long-term beneficial effects. These hypoth-

eses were addressed in several rodent studies investigating

diets enriched with 5% BRBs in rats [55] and mice [53,54]. In

faeces of ApcMin/þ mice, a mouse model of human FAP, BRB

intervention for eight weeks significantly increased Lactobacil-
lus and Bacteroidaceae populations determined by quantitative

polymerase chain reaction (qPCR) using population-specific

primers, whereas Bifidobacteriales and Ruminococcus popu-

lations were not changed [53]. Similarly, in a study in F-344

rats, six week interventions with diets containing either

BRBs, the anthocyanin fraction or the fibre fraction of BRBs,

respectively, led to time-dependent alterations in the compo-

sition and diversity of gut microbial populations, determined

by Roche 454 pyrosequencing of the bacterial 16S gene [55].

Whole BRBs and the fibre fraction increase the abundance of

anti-inflammatory bacteria, such as Akkermansia and Desulfovi-
brio. Bacteria producing butyrate, a short-chain fatty acid

(SCFA) generated by the microbial fermentation of dietary

fibre (see Dietary fibre: short-chain fatty acids) were increased

by whole-BRB-supplemented diet [55]. In wild-type C57BL/

6 mice, BRB intervention for eight weeks significantly changed

the levels of 41 metabolites in colonic mucosa, 40 metabolites in

liver and 34 metabolites in faeces, compared with control diet-

fed mice [54]. These studies suggest that alterations in the gut

microbiota by dietary BRBs might influence human health.
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The link between altered BRB metabolite levels and epigenetic

gene regulation in colonic tissue still needs to be established.
stb.royalsocietypublishing.org
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(iv) Ellagitannins and urolithins
Pomegranate, strawberries, blueberries, raspberries, BRBs, nuts

and tea are a rich source of ellagitannins [71]. Ellagitannins

belong to the polyphenol group of hydrolysable tannins. They

are hydrolysed to ellagic acid and further microbially metab-

olized by decarboxylation and sequential dehydroxylation to

urolithins [42,43]. Lactobacilli and Coriobacteriaceae (Gordonibac-
ter) have been shown to be involved in the metabolism of

ellagitannins [72]. Human populations can be stratified into

three urolithin-producing groups, depending on the spectrum

of urolithin metabolites [73]. Metabotype A (25–80% of the vol-

unteers in different trials) produce only urolithin A conjugates,

whereas in metabotype B (10–50%), isourolithin A and/or

urolithin B can be detected in addition to urolithin

A. Metabotype 0 (5–25%) is not able to produce urolithins,

and ellagic acid metabolism stops at the level of urolithin

M-6. The three metabotypes were consistently detected, inde-

pendent of health status, age, gender, body mass index, and

amount or type of food source ingested. A higher percentage

of metabotype B was associated with gut microbial dysbiosis

indicative of chronic diseases in studies on metabolic syndrome

and in colorectal cancer (CRC) patients (review in [73]).

Urolithins have a broad spectrum of bioactivities in vitro
and in vivo, including antioxidative, anti-inflammatory, anti-

oestrogenic and anti-proliferative activities [42,43,45,73–75].

Several studies have addressed the question whether ellagitan-

nins and urolithins target epigenetic mechanisms, with a focus

on miRNAs. Wen et al. revealed that incubation of HepG2 cells

with the anti-proliferative ellagitannin BJA3121 (50 mg ml21

for 6 h) altered the expression of 25 miRNAs involved in regu-

lation of proliferation and cell differentiation, including

17 upregulated and eight downregulated miRNAs [44].

Gonzáles-Sarrias et al. demonstrated that single ellagitannin

metabolites or metabolite mixtures (100 mM, 48 h treatment)

inhibited cell proliferation and induced cell-cycle arrest and

apoptosis in a panel of colon (cancer) cell lines. They identified

induction of cyclin-dependent kinase inhibitor 1A ( p21) as a

common target of urolithins and could link p21 induction

with downregulation of onco-miR-224 or upregulation of

tumour suppressor miR-215 [45]. Nuñez-Sánchez et al. ana-

lysed the impact of a daily dose of 900 mg pomegranate

extract for 5–35 days before surgery on miRNA expression in

colon tissue versus tumour tissue from 35 CRC patients

versus 10 control CRC patients in a randomized, double-

blind, controlled trial [56]. Surgery led to a general artefactual

induction of miRNAs in both normal and tumour tissue.

Pomegranate extract intake reversed the surgery-mediated

upregulation of various miRNAs and mildly reduced

expression of selected miRNAs in tumour tissue compared

with normal tissue. However, there was no association

between tissue urolithin levels and the observed miRNA

expression changes [56]. Similarly, pomegranate extract inter-

vention led to alterations in gene expression, but they were

not associated with urolithin levels or metabotypes [76].

In an in vitro inflammation model of monocytes stimulated

with tumour necrosis factor a (TNFa), 5 mM ellagic acid pre-

vented TNFa-mediated reduction of HDAC activity, whereas

ellagic acid and urolithins B and C inhibited the concomitant

induction of HAT activity by greater than 50%. The compounds
did not directly inhibit HDAC or HAT activity, but might rather

target TNFa-stimulated expression changes [46].

In summary, these studies suggest a potential influence of

urolithins and other microbial metabolites of polyphenols on

epigenetic regulators, and justify a more systematic evaluation

of their effects on DNA methylation, histone modifications and

miRNA expression to establish a causal relationship.

(c) Cruciferous vegetables
Cruciferous vegetables are a rich source of glucosinolates as

precursors of isothiocyanates (ITCs) and other reactive com-

pounds [77]. ITCs have antimicrobial properties [78] and a

broad range of cancer-preventive activities, including inhibition

of inflammation and cell proliferation, as well as dose-

dependent induction of metabolic detoxification or cell-cycle

arrest, apoptosis and autophagy [79,80]. Release of ITCs from

glucosinolates is catalysed by the plant-derived thioglucosidase

myrosinase. When myrosinase activity is inactivated by

cooking, this reaction is dependent on gut bacterial thioglycosi-

dases [81–84]. The diversity of the gut microbiome can,

therefore, modulate the bioavailability of ITCs (comprehensive

overview in [85]). On the other hand, regular cruciferous

vegetable consumption can affect the composition of human

gut bacterial communities. In a small randomized, crossover,

controlled feeding study involving 17 participants, addition of

14 g kg21 body weight/day cruciferous vegetables for 14 days

led to a gut microbiota community shift during the intervention

period, with high inter-individual variation both in the baseline

microbiota composition and in the response to cruciferous

vegetable intake. Also, the authors observed substantial inter-

individual variation in ITC excretion after cruciferous vegetable

intake [86].

In 2004, Myzak et al. first revealed that a cysteine metab-

olite of sulforaphane, the major ITC released from broccoli

sprouts, inhibited HDAC activity in vitro [47]. The same

group demonstrated HDAC inhibitory activity and histone

hyperacetylation in various tissues and intestinal polyps in

the ApcMin/þ mouse model. Single ingestion of 68 g fresh

broccoli sprouts led to rapid and transient HDAC inhibition

in human blood cells [58]. Sulforaphane and other bioactive

compounds from cruciferous vegetables also affect additional

epigenetic mechanisms (review in [87,88]).

(d) Dietary fibre: short-chain fatty acids
The fermentation of dietary fibre leads to the formation of

SCFAs including acetate, propionate and butyrate. Butyrate

serves as a major energy source for intestinal epithelial cells

[89,90]. The potential of butyrate to prevent colon carcinogen-

esis is associated with anti-inflammatory and antioxidative

effects, induction of cell differentiation, cell-cycle arrest and

apoptosis (comprehensive overview in [91,92]). HDAC inhibi-

tory activity of butyrate was first described almost 40 years

ago (summary in [93]). Many of its effects on gene expression

and its anti-proliferative activity are related to changes in chro-

matin structure. Additional cellular targets include acetylation

of non-histone proteins, alteration of DNA methylation, inhi-

bition of histone phosphorylation and modulation of

intracellular kinase signalling [94]. Butyrate has been reported

to increase proliferation in normal colonocytes, in contrast to

its effects on colon cancer cells. This ‘butyrate paradox’ has

been explained by butyrate concentration-dependent effects

in the colon [92]. Donohoe et al. proposed that butyrate affects
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histone acetylation by two distinct mechanisms (figure 1) [48].

In the mammalian colon, two butyrate gradients are formed:

the proximal-to-distal luminal gradient arises from bacterial

fermentation of fibre and results in a butyrate concentration of

about 3.5 mM in the proximal colon, which declines to about

0.5 mM in the distal colon. In addition, a luminal-to-crypt gra-

dient arises because of peristalsis and mucus flow in colonic

crypts, with concentrations of 50–800 mM butyrate at the base

of the crypt. In colonocytes near the base of the crypt, butyrate

at low concentrations is taken up by mitochondria, metabolized

to citrate by the tricarboxylic acid (TCA) cycle, and serves as

substrate for ATP-citrate lyase (ACL) to generate acetyl-CoA.

Acetyl-CoA then stimulates histone acetylation via HAT.

At higher doses of butyrate in colonocytes, exceeding the rate

of metabolism in the TCA cycle, and in cancer cells that metab-

olize little butyrate, butyrate accumulates inside nuclei

and inhibits HDAC activity, resulting in increased histone

acetylation. Although both pathways result in histone hyper-

acetylation, transcriptomic analyses indicate that different sets

of genes are affected. Whereas activation of the acetyl-CoA/

HAT pathway induces genes involved in cell proliferation,

HDAC inhibition upregulates genes involved in cell-cycle

arrest and induction of apoptosis and cell differentiation [48].

Functional relevance of these in vitro observations was confir-

med in gnotobiotic mouse models colonized with wild-type

or mutant strains of a butyrate-producing bacterium to demon-

strate that dietary fibre has potent tumour-suppressive effects in

a microbiota- and butyrate-dependent manner [60].
(e) Long-chain omega 3 fatty acids (LC v3 FA)
Long-chain omega-3 polyunsaturated fatty acids (LC v3 FAs)

are essential fatty acids necessary for human health [95].
a-Linolenic acid (ALA) is a plant-derived LC v3 FA found in

soyabeans, walnuts, dark green leafy vegetables and seed

oils. Cold-water fish (fish-oil) are the main source of eicosapen-

taenoic acid (EPA) and docosahexaenoic acid (DHA). LC v3

FAs have antioxidant and anti-inflammatory activity, and are

incorporated into cellular membranes. Dietary intake of LC

v3 FAs reduces the risk for chronic degenerative diseases

including cardiovascular disease, breast and prostate cancer,

and depression [96].

LC v3 FAs have been shown to target epigenetic mechan-

isms at the level of histone methylation and miRNA

expression. Dimri et al. identified the histone methyltransfer-

ase EZH2 as a target of LC v3 FAs [49]. EZH2 promotes

H3K27 trimethylation at promoter regions to maintain

genes in a transcriptional repressive state. Various human

breast cancer cell lines were treated with EPA and DHA at

40 and 80 mM concentrations for 3–8 h. Both compounds

dose-dependently reduced protein expression of EZH2 by

increasing its proteasomal degradation and lowered

H3K27me3 levels. As a result, EPA and DHA treatment elev-

ated the levels of the EZH2 targets CDH1 and IGFBP3 and

decreased the invasive phenotype [49]. Davidson et al.
tested the influence of LC v3 FA intervention on carcino-

gen-induced rat colon carcinogenesis and concomitant

dysregulation of miRNA expression [62]. Rats were fed

diets containing fish oil or corn oil in combination with

pectin or cellulose. Tumours were induced by two weekly

injections with azoxymethane (AOM). Fish-oil intervention

significantly reduced the numbers of AOM-induced tumours,

especially in combination with pectin. Fish-oil exposure also

prevented downregulation of five miRNAs (let-7d, mir-15b,

miR-107, miR-109 and miR-324–5p) by AOM treatment, and

had the overall strongest reducing effect on the numbers of
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differentially expressed miRNAs. This study demonstrates

that dietary LC v3 FAs can protect from carcinogen-induced

changes in miRNA profiles [62]. Of note, LC v3 FA formation

is affected by the gut microbiota: Wall et al. orally co-adminis-

tered ALA with two strains of Bifidobacterium breve to mice

and detected elevated levels of EPA in liver and DHA in

the brain [61].

3. Summary and conclusion
In summary, these examples indicate that the gut microbiota

can affect the epigenome in various ways. Long-term dietary

choices affect diversity and gene expression of the gut micro-

biota. On the other hand, the gut microbiota influences

bioavailability of dietary agents, and provides energy metab-

olites as cofactors of epigenetic reactions. Dietary agents may

affect the epigenome either directly or through their microbial

metabolites. These interactions are best investigated in

human intervention studies, as there are differences in inter-

mediary and microbial metabolism between rodents and

humans, as exemplified by the ability to produce S-

(2)equol from the soya component daidzein. Alternatively,

inoculation of gnotobiotic animals with human microflora

allows investigation of gut microbial metabolites under

‘humanized’ conditions [97].
Future studies need to integrate information on lifestyle

(dietary intake, food processing, information on physical

activity, antibiotic use, etc.), genotype, gut microbiome compo-

sition and metabolome with genome-wide information on the

epigenome and gene/protein expression to fully understand,

in a ‘systems biology’ approach, interactions within the

system and how to influence them in the direction of improved

human health (figure 2). This ambitious goal can only be

reached in large interdisciplinary research projects, combining

the expertise of food technologists, nutritionists, food chemists,

molecular biologists, epigeneticists, clinicians, nutritional epi-

demiologists, bioinformaticians and statisticians to achieve an

integrated view on the influence of diet on human health. Irre-

spective of promising reports, a causal relationship between

modulation of epigenetic mechanisms and prevention of

chronic diseases still needs to be established for dietary

constituents as well as for their metabolites.
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