Downloaded from http://rstb.royalsocietypublishing.org/ on April 23, 2018

PHILOSOPHICAL
TRANSACTIONS B

rsth.royalsocietypublishing.org

)

ReView Check for

updates

Cite this article: Gerhauser C. 2018 Impact of
dietary gut microbial metabolites on the
epigenome. Phil. Trans. R. Soc. B 373:
20170359.
http://dx.doi.org/10.1098/rsth.2017.0359

Accepted: 30 January 2018

One contribution of 18 to a discussion meeting
issue ‘Frontiers in epigenetic chemical biology'.

Subject Areas:
health and disease and epidemiology,
molecular biology, physiology

Keywords:
epigenomics, gut microbiota, metabolism,
diet, human health

Author for correspondence:
Clarissa Gerhauser
e-mail: c.gerhauser@dkfz.de

THE ROYAL SOCIETY

PUBLISHING

Impact of dietary gut microbial
metabolites on the epigenome

(larissa Gerhauser

Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany

(G, 0000-0002-5792-3901

Within the past decade, epigenetic mechanisms and their modulation by natu-
ral products have gained increasing interest. Dietary bioactive compounds
from various sources, including green tea, soya, fruit and berries, cruciferous
vegetables, whole grain foods, fish and others, have been shown to target
enzymes involved in epigenetic gene regulation, including DNA methyltrans-
ferases, histone acetyltransferases, deacetylases and demethylases in vitro
and in cell culture. Also, many dietary agents were shown to alter miRNA
expression. In vivo studies in animal models and humans are still limited.
Recent research has indicated that the gut microbiota and gut microbial
metabolites might be important mediators of diet—epigenome interactions.
Inter-individual differences in the gut microbiome might affect release, metab-
olism and bioavailability of dietary agents and explain variability in response
to intervention in human studies. Only a few microbial metabolites, including
folate, phenolic acids, S-(—)equol, urolithins, isothiocyanates, and short- and
long-chain fatty acids have been tested with respect to their potential to
influence epigenetic mechanisms. Considering that a complex mixture of inter-
mediary and microbial metabolites is present in human circulation, a more
systematic interdisciplinary investigation of nutri-epigenetic activities and
their impact on human health is called for.

This article is part of a discussion meeting issue ‘Frontiers in epigenetic
chemical biology’.

1. Introduction

(a) The gut microbiome: our second genome

Studies have identified large inter-individual differences in gut microbial compo-
sition, with consequences for human health [1,2]. A recent large-scale sequencing
programme of 124 individuals identified about 3.3 million non-redundant
microbial genes, derived from 576.7 gigabases of sequence [3]. Thus, the gut meta-
genome (the collective genetic information derived directly from a faecal sample
by deep sequencing) is about 150 times larger than the human genome. Eighteen
bacterial species were detected in all individuals, 57 in greater than or equal to
90% and 75 in greater than or equal to 50% of individuals [3]. A following
study revealed that based on their predominant gut bacterial communities, indi-
viduals could be grouped into three main clusters or enterotypes, namely
Bacteroides, Prevotella and Ruminococcus. Host properties such as age, body mass
index or gender did not explain the enterotypes. Rather, enterotypes seem to
differ in their choice of energy source [4]. Wu et al. [5] postulated that enterotypes
were strongly associated with long-term diets, particularly protein and animal fat
(Bacteroides) versus plant-derived carbohydrates and fibre (Prevotella). Subsequent
studies questioned the existence of distinct enterotypes [6] and instead proposed
that microbial gene richness (the number of microbial genes per individual) might
be more relevant for human health status [7,8]. Populations could be separated by
a bimodal distribution of gene counts. Low gene richness was related to overall
adiposity, insulin resistance, dyslipidaemia and an inflammatory phenotype
compared with the high gene group [7,8]. In two large metagenomics analyses
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of Dutch and Belgian populations, low microbial diversity has
been linked to consumption of high-fat whole milk, sugar-
sweetened drinks, higher total energy and carbohydrate
intake, and snacking, whereas high microbial diversity has
been associated with consumption of coffee, tea, red wine
and dark chocolate as sources of polyphenols [9,10]. Overall,
these studies indicate that the metagenomic composition can
be modified by (long-term) dietary patterns [1,2].

(b) Regulation of the epigenome

The term ‘epigenetics’ refers to modifications in gene
expression caused by heritable, but potentially reversible,
changes in DNA methylation and chromatin structure. Major
epigenetic mechanisms include DNA hyper- and hypo-
methylation [11], remodelling of the chromatin, modification
of histones by histone acetylation and methylation (among
others), and noncoding RNAs [12].

The DNA methyltransferase (DNMTs) family of enzymes
catalyses the transfer of methyl groups from S-adenosyl-L-
methionine (SAM) to DNA. In mammals, this occurs at the
5-position of cytosine (C) in the context of CpG dinucleotides,
generating 5-methylcytosine (5mC). CpG dinucleotides are not
evenly distributed in the genome: CpG-dense regions (CpG
islands or CGlIs) are located in the promoter regions of genes
and are mostly unmethylated in healthy tissues, allowing
active gene transcription. Conversely, intra- and intergenic
regions have lower CpG density and are highly methylated,
thus limiting DNA accessibility and maintaining genomic stab-
ility. Focal gain in methylation at CGIs in promoter regions, for
example, of tumour suppressor genes, concomitant with global
loss of methylation (hypomethylation), especially at repetitive
sequences, is thought to be involved in the aetiology of cancer.
In contrast to irreversible genetic alterations (mutations, del-
etions, etc.), genes silenced by epigenetic modifications are
still intact and can be reactivated [13,14].

Chromatin accessibility and gene expression is controlled
by various post-translational modifications of N-terminal
histone tails, including acetylation, methylation, phosphoryl-
ation, ubiquitinylation, sumoylation and ADP ribosylation
[15,16]. Acetylation of histone tails by histone acetyltrans-
ferases (HATSs) opens up the chromatin structure, allowing
transcription factors to access the DNA [17]. Histone acetyl-
ation is reversed by histone deacetylases (HDACs) that
remove histone acetyl groups by catalysing their transfer to
coenzyme A (CoA), leading to chromatin condensation
and transcriptional repression. Beside the currently known
HDACs 1-11, structurally unrelated sirtuins (SIRTs) possess
deacetylating activity, using NAD" as a cofactor [18]. Histone
lysine methylation has activating or repressive effects on gene
expression, dependent on the lysine residue that is modified by
methylation and the number of methyl groups [15]. More than
30 histone methyltransferases have been identified in humans
that transfer methyl groups from SAM to lysine residues
[19-21]. Histone methylation marks are removed by histone
lysine demethylases (HDMs), for example, by lysine-specific
demethylase 1 (LSD1) and the family of about 20 Jumonji
domain-containing (JmjC) histone demethylases [22].

Noncoding (nc) RNAs also possess a regulatory effect on
gene expression. MicroRNAs (miRNAs) are small ncRNAs of
20-22 nt that inhibit gene expression at the posttranscrip-
tional level either by imperfect base-pairing to the mRNA
3'-untranslated regions to repress protein synthesis, or by
affecting mRNA stability (reviewed in [23]). Identification

and functional evaluation of long noncoding (Inc) RNAs
(greater than 200nt) has become an additional area of
scientific interest [24,25].

2. Impact of microbial metabolites on the
epigenome

Dietary agents from various sources, including green tea,
fruit and berries, cruciferous vegetables and soya, directly
target enzymatic activities or modulate expression of enzymes
involved in epigenetic gene regulation. Therefore, they might
affect numerous biological mechanisms, including signal
transduction mediated by nuclear receptors and transcrip-
tion factors such as NF-«B, cell proliferation and cell-cycle
progression, cellular differentiation, DNA repair, apoptosis
induction, cell motility, metastasis formation and cellular
senescence (reviewed in [26-28]). Recent research has indi-
cated that the gut microbiota and gut microbial metabolites
might be important mediators of the diet—epigenome inter-
action (previously reviewed in [29-31]). The present
overview is intended to summarize recent evidence from in
vitro analyses (table 1) and in vivo investigations in rodent
models and human intervention studies (table 2).

(a) Folate and B-vitamins

Folic acid and other B-vitamins are important cofactors in ‘one
carbon metabolism’ to generate SAM for methylation reactions
[32]. Dietary sources of folate include green leafy vegetables,
asparagus, pulses, nuts, cruciferous vegetables, avocado,
papaya, etc. In a dietary intervention study with postmenopau-
sal women, altering plasma levels of folate directly influenced
lymphocyte DNA methylation levels [33]. The gut microbiota
is also involved in the metabolism of folate and B-vitamins
[63]. Selected bacteria are able to synthesize folic acid from
pteridine precursors and p-aminobenzoic acid [34]. Folate
deficiency after antibiotic use indicates that colonic folate pro-
duction can be significant [63]. In addition to folate, the gut
microbiota provides a variety of dietary energy metabolites,
such as ATP, NAD" and acetyl-CoA, which are used as
cofactors by epigenetic enzymes [35,64].

(b) Dietary polyphenols

Polyphenols from various sources, including green tea, black
raspberries (BRBs), red wine, coffee, apples, isoflavones from
soya, curcumin from curry and others, have been reported to
affect epigenetic mechanisms in vitro in enzymatic reactions
and in cell culture (reviewed in [26,27,65]). Studies in
animal models for cancer prevention or dietary interventions
in humans are limited.

(i) Isoflavones from soya

Isoflavones, such as genistein and daidzein, are cancer-
preventive phytochemicals with anti-/oestrogenic activity
found in soya and other legumes. Epidemiological studies
suggest that populations following a typical Asian diet rich in
soya products have a reduced risk for hormone-dependent can-
cers [28]. S-(-)equol, a microbial metabolite of daidzein, has
higher bioavailability and oestrogenicity than daidzein.
Metabolomic investigations have shown that approximately
one-third of the Western population and up to 65% of the
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Asian population is able to produce S-(—)equol [66,67].
Variability in gut microbiota composition or human gene poly-
morphisms, for example, in hormone receptors or hormone
binding proteins, may explain individual variability observed
in clinical studies investigating biological effects of isoflavones
[67]. During the past decade, evidence is accumulating that
soya isoflavones including the metabolite S-(— )equol affect epi-
genetic enzymes that write, read or erase epigenetic marks, and
subsequently modulate gene expression to counteract the ‘hall-
marks of cancer’ (review in [28]). In the few studies performed
in humans, gut microbial metabolism has not been systemati-
cally taken into consideration, and its influence on epigenetic
endpoints should be addressed in future investigations. In
addition, pre-clinical models should be carefully chosen to
reflect human in vivo conditions. For example, rodents very effi-
ciently convert daidzein into S-(—)equol [68]. The outcome of
investigations on soya in rodent models might, therefore, not
be generally informative for human populations.

(i) Green tea catechins

With respect to the modulation of epigenetic mechanisms, green
tea catechins (GTCs), with (—)-epigallocatechin gallate (EGCG)
as the major catechin, represent one of the best investigated
groups of polyphenols. In vitro, EGCG was shown to inhibit
the activity and expression of DNMTs and to demethylate and
re-express genes involved in cell-cycle control (p16, p21), cell sig-
nalling (RARB), WNT-signalling (WIF-1), DNA repair (MGMT,
hMLH1) and apoptosis (DAPK) (review in [65]).

Lee et al. suggested that biotransformation of catechins by
Phase II metabolic enzymes might influence the activity of
epigenetic enzymes. Catechin metabolism by the catechol-O-
methyltransferase (COMT) leads to consumption of SAM,
which is then less available for the catalytic activity of
DNA and histone methyltransferases. On the other hand,
methylation reactions by COMT produce S-adenosyl-L-
homocysteine (SAH), which is a negative feedback inhibitor
of methyltransferases [69]. Both depletion of SAM as well as
elevated levels of SAH might result in reduced levels of DNA
or histone methylation, which might consequentially influence
gene expression.

Dietary polyphenols also undergo gut microbial metab-
olism. The microbial degradation of catechins such as
epicatechin (EC) by cleavage of the O-heterocycle and dehydrox-
ylation results in the formation of phenolic acids [36,38]. In an
enzymatic in vitro assay of DNMT activity, protocatechuic acid
(at 20 and 40 uM, respectively) inhibited enzyme activity by
60—-80% [39]. Waldecker et al. investigated microbial metabolites
of apple juice extracts on enzymatic HDAC activity. Half-maxi-
mal inhibitory concentrations (ICs, values) were in the range of
0.19-5.47 mM, exceeding the concentrations of phenolic acids
detected in human faecal water [40,41]. Whether these weak
in vitro inhibitory effects of phenolic acids have physiological
relevance needs to be addressed in future investigations in vivo.

GTCs have been repeatedly reported to prevent prostate
cancer in ‘TRansgenic Adenocarcinoma of Mouse Prostate’
(TRAMP) mice (summary in [65]). Morey Kinney et al. used
a genome-wide approach to test the influence of GTCs on
prostate cancer and DNA methylation in the TRAMP mouse
model. Unexpectedly, the intervention with GTCs (0.3% in
drinking water) prevented neither prostate cancer growth
nor DNA methylation in prostate, liver and gut [50]. Cur-
rently, it can only be speculated whether differences in gut

microbial populations and alterations in GTC metabolism

might explain the observed discrepancies with earlier studies.

(iii) Black raspberries

BRBs are a good source for polyphenols including ellagic acid,
quercetin glycosides and anthocyanins. Freeze-dried BRBs
have been shown to prevent oesophageal and colon cancer in
animal models by targeting carcinogen metabolism, cell pro-
liferation, inflammation, angiogenesis and apoptosis, and are
well tolerated by humans at daily doses of 45g [70]. In a
small Phase I human dietary intervention study with 20
colon cancer patients, 60 g freeze-dried BRBs per day for a
minimum of four weeks led to reduced expression of
DNMT1 and promoter demethylation of genes involved in
the WNT-signalling pathway in tumour tissue, accompanied
by reduced expression of WNT-target proteins such as -cate-
nin, E-cadherin and Ki67 as proliferation marker [51]. In a
subsequent Phase Ib study, the same group investigated
whether BRBs might regress rectal polyps in patients with
familial adenomatous polyposis (FAP), a genetic disease
caused by a mutation of the APC gene and characterized by
rectal polyps detectable at a young age and high risk for devel-
oping colon cancer [52]. Fourteen patients with FAP were
treated with BRBs daily for nine months. Seven patients
received BRB powder orally plus two BRB suppositories,
whereas another seven patients received suppositories
together with an oral placebo. Intervention with suppositories
was sufficient to reduce polyp number and burden at the end
of the study. Three of the 14 patients did not respond to the
intervention. In colon tissue of responders, DNMT1 expression
(tumours) and p16 promoter methylation (tumours and adja-
cent normal tissue) were significantly reduced at the end of
the study compared with baseline levels, whereas no changes
were detected in the three non-responding patients [52]. The
fact that the patients responded differently to the local effects
of BRB suppositories indicate that BRB components either are
metabolized by the gut microbiota (see Ellagitannins and uro-
lithins below) or might influence the gut microbial
composition with long-term beneficial effects. These hypoth-
eses were addressed in several rodent studies investigating
diets enriched with 5% BRBs in rats [55] and mice [53,54]. In
faeces of ApcMi"/ * mice, a mouse model of human FAP, BRB
intervention for eight weeks significantly increased Lactobacil-
Ius and Bacteroidaceae populations determined by quantitative
polymerase chain reaction (qQPCR) using population-specific
primers, whereas Bifidobacteriales and Ruminococcus popu-
lations were not changed [53]. Similarly, in a study in F-344
rats, six week interventions with diets containing either
BRBs, the anthocyanin fraction or the fibre fraction of BRBs,
respectively, led to time-dependent alterations in the compo-
sition and diversity of gut microbial populations, determined
by Roche 454 pyrosequencing of the bacterial 16S gene [55].
Whole BRBs and the fibre fraction increase the abundance of
anti-inflammatory bacteria, such as Akkermansia and Desulfovi-
brio. Bacteria producing butyrate, a short-chain fatty acid
(SCFA) generated by the microbial fermentation of dietary
fibre (see Dietary fibre: short-chain fatty acids) were increased
by whole-BRB-supplemented diet [55]. In wild-type C57BL/
6 mice, BRB intervention for eight weeks significantly changed
the levels of 41 metabolites in colonic mucosa, 40 metabolites in
liver and 34 metabolites in faeces, compared with control diet-
fed mice [54]. These studies suggest that alterations in the gut
microbiota by dietary BRBs might influence human health.
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The link between altered BRB metabolite levels and epigenetic
gene regulation in colonic tissue still needs to be established.

(iv) Ellagitannins and urolithins

Pomegranate, strawberries, blueberries, raspberries, BRBs, nuts
and tea are a rich source of ellagitannins [71]. Ellagitannins
belong to the polyphenol group of hydrolysable tannins. They
are hydrolysed to ellagic acid and further microbially metab-
olized by decarboxylation and sequential dehydroxylation to
urolithins [42,43]. Lactobacilli and Coriobacteriaceae (Gordonibac-
ter) have been shown to be involved in the metabolism of
ellagitannins [72]. Human populations can be stratified into
three urolithin-producing groups, depending on the spectrum
of urolithin metabolites [73]. Metabotype A (25—-80% of the vol-
unteers in different trials) produce only urolithin A conjugates,
whereas in metabotype B (10-50%), isourolithin A and/or
urolithin B can be detected in addition to urolithin
A. Metabotype 0 (5-25%) is not able to produce urolithins,
and ellagic acid metabolism stops at the level of urolithin
M-6. The three metabotypes were consistently detected, inde-
pendent of health status, age, gender, body mass index, and
amount or type of food source ingested. A higher percentage
of metabotype B was associated with gut microbial dysbiosis
indicative of chronic diseases in studies on metabolic syndrome
and in colorectal cancer (CRC) patients (review in [73]).

Urolithins have a broad spectrum of bioactivities in vitro
and in vivo, including antioxidative, anti-inflammatory, anti-
oestrogenic and anti-proliferative activities [42,43,45,73-75].
Several studies have addressed the question whether ellagitan-
nins and urolithins target epigenetic mechanisms, with a focus
on miRNAs. Wen et al. revealed that incubation of HepG2 cells
with the anti-proliferative ellagitannin BJA3121 (50 pg ml ™'
for 6 h) altered the expression of 25 miRNAs involved in regu-
lation of proliferation and cell differentiation, including
17 upregulated and eight downregulated miRNAs [44].
Gonzales-Sarrias et al. demonstrated that single ellagitannin
metabolites or metabolite mixtures (100 uM, 48 h treatment)
inhibited cell proliferation and induced cell-cycle arrest and
apoptosis in a panel of colon (cancer) cell lines. They identified
induction of cyclin-dependent kinase inhibitor 1A (p21) as a
common target of urolithins and could link p21 induction
with downregulation of onco-miR-224 or upregulation of
tumour suppressor miR-215 [45]. Nuhez-Sanchez et al. ana-
lysed the impact of a daily dose of 900 mg pomegranate
extract for 5-35 days before surgery on miRNA expression in
colon tissue versus tumour tissue from 35 CRC patients
versus 10 control CRC patients in a randomized, double-
blind, controlled trial [56]. Surgery led to a general artefactual
induction of miRNAs in both normal and tumour tissue.
Pomegranate extract intake reversed the surgery-mediated
upregulation of various miRNAs and mildly reduced
expression of selected miRNAs in tumour tissue compared
with normal tissue. However, there was no association
between tissue urolithin levels and the observed miRNA
expression changes [56]. Similarly, pomegranate extract inter-
vention led to alterations in gene expression, but they were
not associated with urolithin levels or metabotypes [76].

In an in vitro inflammation model of monocytes stimulated
with tumour necrosis factor o (TNFa), 5 uM ellagic acid pre-
vented TNFa-mediated reduction of HDAC activity, whereas
ellagic acid and urolithins B and C inhibited the concomitant
induction of HAT activity by greater than 50%. The compounds

did not directly inhibit HDAC or HAT activity, but might rather
target TNFa-stimulated expression changes [46].

In summary, these studies suggest a potential influence of
urolithins and other microbial metabolites of polyphenols on
epigenetic regulators, and justify a more systematic evaluation
of their effects on DNA methylation, histone modifications and
miRNA expression to establish a causal relationship.

(c) Cruciferous vegetables

Cruciferous vegetables are a rich source of glucosinolates as
precursors of isothiocyanates (ITCs) and other reactive com-
pounds [77]. ITCs have antimicrobial properties [78] and a
broad range of cancer-preventive activities, including inhibition
of inflammation and cell proliferation, as well as dose-
dependent induction of metabolic detoxification or cell-cycle
arrest, apoptosis and autophagy [79,80]. Release of ITCs from
glucosinolates is catalysed by the plant-derived thioglucosidase
myrosinase. When myrosinase activity is inactivated by
cooking, this reaction is dependent on gut bacterial thioglycosi-
dases [81-84]. The diversity of the gut microbiome can,
therefore, modulate the bioavailability of ITCs (comprehensive
overview in [85]). On the other hand, regular cruciferous
vegetable consumption can affect the composition of human
gut bacterial communities. In a small randomized, crossover,
controlled feeding study involving 17 participants, addition of
14 g kg~ ! body weight/day cruciferous vegetables for 14 days
led to a gut microbiota community shift during the intervention
period, with high inter-individual variation both in the baseline
microbiota composition and in the response to cruciferous
vegetable intake. Also, the authors observed substantial inter-
individual variation in ITC excretion after cruciferous vegetable
intake [86].

In 2004, Myzak ef al. first revealed that a cysteine metab-
olite of sulforaphane, the major ITC released from broccoli
sprouts, inhibited HDAC activity in vitro [47]. The same
group demonstrated HDAC inhibitory activity and histone
hyperacetylation in various tissues and intestinal polyps in
the Apc™™* mouse model. Single ingestion of 68 g fresh
broccoli sprouts led to rapid and transient HDAC inhibition
in human blood cells [58]. Sulforaphane and other bioactive
compounds from cruciferous vegetables also affect additional
epigenetic mechanisms (review in [87,88]).

(d) Dietary fibre: short-chain fatty acids

The fermentation of dietary fibre leads to the formation of
SCFAs including acetate, propionate and butyrate. Butyrate
serves as a major energy source for intestinal epithelial cells
[89,90]. The potential of butyrate to prevent colon carcinogen-
esis is associated with anti-inflammatory and antioxidative
effects, induction of cell differentiation, cell-cycle arrest and
apoptosis (comprehensive overview in [91,92]). HDAC inhibi-
tory activity of butyrate was first described almost 40 years
ago (summary in [93]). Many of its effects on gene expression
and its anti-proliferative activity are related to changes in chro-
matin structure. Additional cellular targets include acetylation
of non-histone proteins, alteration of DNA methylation, inhi-
bition of histone phosphorylation and modulation of
intracellular kinase signalling [94]. Butyrate has been reported
to increase proliferation in normal colonocytes, in contrast to
its effects on colon cancer cells. This ‘butyrate paradox’ has
been explained by butyrate concentration-dependent effects
in the colon [92]. Donohoe et al. proposed that butyrate affects
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histone acetylation by two distinct mechanisms (figure 1) [48].
In the mammalian colon, two butyrate gradients are formed:
the proximal-to-distal luminal gradient arises from bacterial
fermentation of fibre and results in a butyrate concentration of
about 3.5 mM in the proximal colon, which declines to about
0.5 mM in the distal colon. In addition, a luminal-to-crypt gra-
dient arises because of peristalsis and mucus flow in colonic
crypts, with concentrations of 50—-800 uM butyrate at the base
of the crypt. In colonocytes near the base of the crypt, butyrate
atlow concentrations is taken up by mitochondria, metabolized
to citrate by the tricarboxylic acid (TCA) cycle, and serves as
substrate for ATP-citrate lyase (ACL) to generate acetyl-CoA.
Acetyl-CoA then stimulates histone acetylation via HAT.
At higher doses of butyrate in colonocytes, exceeding the rate
of metabolism in the TCA cycle, and in cancer cells that metab-
olize little butyrate, butyrate accumulates inside nuclei
and inhibits HDAC activity, resulting in increased histone
acetylation. Although both pathways result in histone hyper-
acetylation, transcriptomic analyses indicate that different sets
of genes are affected. Whereas activation of the acetyl-CoA/
HAT pathway induces genes involved in cell proliferation,
HDAC inhibition upregulates genes involved in cell-cycle
arrest and induction of apoptosis and cell differentiation [48].
Functional relevance of these in vitro observations was confir-
med in gnotobiotic mouse models colonized with wild-type
or mutant strains of a butyrate-producing bacterium to demon-
strate that dietary fibre has potent tumour-suppressive effects in
a microbiota- and butyrate-dependent manner [60].

(e) Long-chain omega 3 fatty acids (LC w3 FA)
Long-chain omega-3 polyunsaturated fatty acids (LC w3 FAs)
are essential fatty acids necessary for human health [95].

a-Linolenic acid (ALA) is a plant-derived LC w3 FA found in
soyabeans, walnuts, dark green leafy vegetables and seed
oils. Cold-water fish (fish-oil) are the main source of eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA). LC w3
FAs have antioxidant and anti-inflammatory activity, and are
incorporated into cellular membranes. Dietary intake of LC
03 FAs reduces the risk for chronic degenerative diseases
including cardiovascular disease, breast and prostate cancer,
and depression [96].

LC w3 FAs have been shown to target epigenetic mechan-
isms at the level of histone methylation and miRNA
expression. Dimri ef al. identified the histone methyltransfer-
ase EZH2 as a target of LC w3 FAs [49]. EZH2 promotes
H3K27 trimethylation at promoter regions to maintain
genes in a transcriptional repressive state. Various human
breast cancer cell lines were treated with EPA and DHA at
40 and 80 pM concentrations for 3-8 h. Both compounds
dose-dependently reduced protein expression of EZH2 by
increasing its proteasomal degradation and lowered
H3K27me3 levels. As a result, EPA and DHA treatment elev-
ated the levels of the EZH2 targets CDH1 and IGFBP3 and
decreased the invasive phenotype [49]. Davidson et al.
tested the influence of LC w3 FA intervention on carcino-
gen-induced rat colon carcinogenesis and concomitant
dysregulation of miRNA expression [62]. Rats were fed
diets containing fish oil or corn oil in combination with
pectin or cellulose. Tumours were induced by two weekly
injections with azoxymethane (AOM). Fish-oil intervention
significantly reduced the numbers of AOM-induced tumours,
especially in combination with pectin. Fish-oil exposure also
prevented downregulation of five miRNAs (let-7d, mir-15b,
miR-107, miR-109 and miR-324-5p) by AOM treatment, and
had the overall strongest reducing effect on the numbers of
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Figure 2. The ‘systems biology’ of nutrition and human health. (Online version in colour.)

differentially expressed miRNAs. This study demonstrates
that dietary LC w3 FAs can protect from carcinogen-induced
changes in miRNA profiles [62]. Of note, LC w3 FA formation
is affected by the gut microbiota: Wall et al. orally co-adminis-
tered ALA with two strains of Bifidobacterium breve to mice
and detected elevated levels of EPA in liver and DHA in
the brain [61].

3. Summary and conclusion

In summary, these examples indicate that the gut microbiota
can affect the epigenome in various ways. Long-term dietary
choices affect diversity and gene expression of the gut micro-
biota. On the other hand, the gut microbiota influences
bioavailability of dietary agents, and provides energy metab-
olites as cofactors of epigenetic reactions. Dietary agents may
affect the epigenome either directly or through their microbial
metabolites. These interactions are best investigated in
human intervention studies, as there are differences in inter-
mediary and microbial metabolism between rodents and
humans, as exemplified by the ability to produce S-
(—)equol from the soya component daidzein. Alternatively,
inoculation of gnotobiotic animals with human microflora
allows investigation of gut microbial metabolites under
‘humanized’ conditions [97].
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