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Abstract: Modern methods of drug discovery and development in recent years make a wide use of computational 
algorithms. These methods utilise Virtual Screening (VS), which is the computational counterpart of experimental 
screening. In this manner the in silico models and tools initial replace the wet lab methods saving time and resources. This 
paper presents the overall design and implementation of a web based scientific workflow system for virtual screening 
called, the Life Sciences Informatics (LiSIs) platform. The LiSIs platform consists of the following layers: the input layer 
covering the data file input; the pre-processing layer covering the descriptors calculation, and the docking preparation 
components; the processing layer covering the attribute filtering, compound similarity, substructure matching, docking 
prediction, predictive modelling and molecular clustering; post-processing layer covering the output reformatting and 
binary file merging components; output layer covering the storage component. The potential of LiSIs platform has been 
demonstrated through two case studies designed to illustrate the preparation of tools for the identification of promising 
chemical structures. The first case study involved the development of a Quantitative Structure Activity Relationship 
(QSAR) model on a literature dataset while the second case study implemented a docking-based virtual screening 
experiment. Our results show that VS workflows utilizing docking, predictive models and other in silico tools as 
implemented in the LiSIs platform can identify compounds in line with expert expectations. We anticipate that the 
deployment of LiSIs, as currently implemented and available for use, can enable drug discovery researchers to more easily 
use state of the art computational techniques in their search for promising chemical compounds. The LiSIs platform is 
freely accessible (i) under the GRANATUM platform at: http://www.granatum.org and (ii) directly at: 
http://lisis.cs.ucy.ac.cy. 
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INTRODUCTION 

 Virtual Screening (VS) can be the first step prior to 
biological screening. The objective of VS is to select the 
most promising compounds that will be subsequently 
scanned in a laboratory setting. In this manner a subset of a 
large dataset is being tested increasing the probability to 
identify lead compounds against specific biological targets 
[1, 2]. In this respect the method is related to machine 
learning and statistical techniques, such as classification and 
regression. These methods target to develop predictive 
models for the identification of the properties of unknown 
compounds based on a set of compounds with known 
properties. Typically, VS processes involve substantial num- 
 
 

*Address correspondence to this author at the Department of Computer 
Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Tel: 
+357-22892685; Fax: +357-22892701; E-mail: kannas.christos@ucy.ac.cy 

bers of molecules and combine a variety of computational 
techniques, often organized in complex computational 
pipelines [3]. 
 Scientific Workflow Management Systems (SWMS) are 
powerful tools with immense potential to expedite the 
design, development and execution processes of computat-
ional experiments. SWMS can be applied by scientists for 
the solution of complex computational problems [4] and also 
to design complex in silico experiments [5]. 
 In this paper we propose a VS platform based on 
scientific workflow modelling. A preliminary version of this 
study was presented in [6]. 
 The Life Sciences Informatics (LiSIs) platform [7] is a 
part of GRANATUM [8], an EU FP7 project. The aim of 
GRANATUM [8] is to provide biomedical researchers 
access to state of the art computational tools to perform 
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complex cancer chemoprevention experiments and to 
conduct studies on large-scale datasets. 
 Cancer chemoprevention is defined as the use of natural, 
synthetic, or biologic chemical agents to reverse, suppress, 
or prevent carcinogenic progression to invasive cancer [9]. 
The experimental approach for the discovery of cancer 
chemopreventive agents is similar to the typical drug 
discovery process (DDP) [10]. 
 Chemoprevention research (CPR) and DDP are highly 
similar processes, therefore the tools used for drug discovery 
can also be applied to CPR. In this context, computational 
tools can be used to develop specific models for the needs of 
chemoprevention. For example, SWMS used for VS in DDP, 
such as Taverna [11-13], KNIME [14, 15], PipelinePilot [16] 
and IDBS InforSence Suite [17], can also be adapted for use 
in CPR. Researchers in the chemoprevention field do not 
generally use these computational tools. Apparently, the 
field of cancer chemoprevention can be advanced by 
customised, and easy to use in silico tools for data handling 
and analysing. 
 It should be emphasized that to the best of our knowledge 
there are no similar tools to LiSIs in cancer 
chemoprevention. Moreover, it is noted that the proposed 
platform features: (i) free and open access to the research 
community, (ii) it is integrated on the GALAXY platform 
that is familiar to molecular biologists, (iii) it aims to have a 
user friendly interface, (iv) it is part of a larger integrated 
project, GRANATUM, offering access to semantic web 
technologies, text mining tools, and collaborative 
environment for sharing data sets, models, etc. [8]. 
Furthermore, the paper covers two case studies that are used 
to evaluate and validate the system: (1) a case study on 
QSAR model for mutagenicity, and (2) on estrogen receptor 
(ER) binding. 

VIRTUAL SCREENING PROCESS 

 VS process is carried out on libraries of real or virtual 
compounds and requires known measured activities of 
control compounds or a known structure of the biomolecular 
target [18]. When only measured activities of compounds are 
known, virtual screening uses analogue-based library design, 
classification and regression models or any combination of 
these. 
 Since no method is generally applicable to all cases, a VS 
experiment takes into account the requirements of each case. 
For example, if high quality ligand activity measurements 
are available, regression methods (Quantitative Structure 
Activity Relationship - QSAR modelling) can be used to 
extract with confidence rules predicting ligand similarity, 
and binding action [19]. 
 When the structure of the target receptor is known the VS 
method typically relies on protein-ligand docking and small 
molecule modelling. Initially, it takes the advantage of the 
knowledge about the receptor site to model it and then perform 
docking from a database. A number of conformations are 
usually sampled for each molecule [20] and a score for every 
possible docking is computed [21]. Due to the computationally 
demanding processes computer clusters are employed by the 
pharmaceutical industry [20, 22]. In addition, databases of 

multiple conformers of compounds are prepared in advance to 
avoid their reproduction for every VS run [23]. Often, multi-
objective methods may be used that enable the use of numerous 
objectives, analogue or target-based, to identify compounds that 
simultaneously meet multiple criteria relevant to the virtual 
screening experiment pursued [24]. 
 The key measure for validating the success of VS is the 
achievement of high enrichment targeting in an experimental 
hit rate for the subset of compounds it recommends which is 
significantly better over that of a random compound set [22]. 
A successful process with high enrichment results in 
considerable savings in resources and time, since fewer 
compounds need to be physically screened while most hits 
present in the original large database are retrieved. In 
practice, to enrich the results of VS, several methods are 
tried and their results are combined to produce a concise, 
high quality virtual hit list [20, 21]. Furthermore, it is also a 
common practice to perform a pre-processing step where 
databases of molecules are cleaned by filtering out 
compounds with undesired properties. These properties 
include, a large size, high flexibility and non-compliance to 
Lipinski’s rule of 5 [25]. During this step compounds 
containing known unwanted substructures, e.g. known 
toxicophores, may also be eliminated [22]. Although 
significant algorithmic improvements have been achieved in 
the VS process, accuracy still varies depending on the 
pharmaceutical target, the virtual library and the docking and 
scoring methods used. The last step is the evaluation of the 
VS experiment results typically via visual inspection by a 
human expert [26]. 

SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS 

 SWMS target in accelerating scientific discovery by 
incorporating in their processing steps, data management and 
analysis, simulation, and visualization tools into a single 
platform. Most importantly SWMS provide an interactive 
visual interface that facilitates the design and execution of 
workflows. A brief overview of the field is given whereas a 
more detailed review on SWMS can be found in [27]. 
 Scientific workflow (SW) based platforms provide tools 
that automate the execution of a class of in silico 
experiments, offering significant benefits for all the phases 
of an experiment’s life-cycle. In the context of the design 
and implementation phase, a repository of tried and tested 
workflows can be available to the scientists to choose from. 
During the execution phase, as experimenting is by 
definition a repeatable process, workflows can relieve the 
scientists of repetitive tasks, while at the same time enable 
keeping track of all the intermediary steps and data 
(provenance). These traces can be used at a later stage to 
enable the reproducibility of the experiment. Provenance 
information [28] is also useful during the analysis phase to 
see the evolution of the research, trace the origin of an error 
or go back to a previous stage and change the direction of 
research. Visualization tools are provided for this phase as 
well for assisting in the evaluation of the results. 
 Through the use of SWs, interdisciplinary teams can 
collaborate closely, share workflows and computational 
components and jointly undertake research initiatives 
requiring end-to-end scientific data management and 
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computational analysis. Moreover, recent advances in grid 
technologies allow workflows to exploit parallel executions 
enabling large-scale data processing. 

MATERIALS AND METHODS 

 LiSIs [7] aims to provide a set of tools to create, update, 
store and share SWs for the discovery of active compounds 
for biomedical researchers. Access to LiSIs can be achieved 
via a web interface through a password protected login 
process either from the GRANATUM portal [8] (preferred 
access point) or directly from the LiSIs portal [7]. The login 
process provides different levels of access to platform 
functionality based on the user profile. The user is able to 
assemble SWs utilizing available in silico models and tools 
loaded into the platform. Depending on the user profile and 
associated permissions, users may also construct new models 
and tools through the development of custom workflows 
made available by the system for this purpose. Workflows 
execute on the system server. The execution results can also 
be stored on the user’s GRANATUM workspace [8], where 
the user is able to access, manipulate or share them with 
other users. 
 

 Fig. (1) is an illustration of the chemoinformatics tools 
available on LiSIs. Below is a brief description of each tool 
category. 

INPUT LAYER 

 The Input Layer consists of the following two component 
categories: 
 Data File Input: provides tools which support parsing 
different chemical and biological data files. File formats 
currently supported include Chemical Data Files, which are sdf 
(SDF - Structure Data File), smi (SMILES - Simplified 
Molecular Input Line Entry Specification), pdb (PDB - Protein 
Data Bank), pdbqt (AutoDock Protein and Ligand data files) 
and Biological Data Files which are csv (CSV - Comma 
Separated Values), tab (Tab Separated Values) and also text 
files. 
 These tools get as input ASCII files and create output files 
which are pickled Python objects, which we reference them as 
binary files. 
 GRANATUM File Input: A component which provides 
GRANATUM’s platform users to upload on LiSIs files located 
at GRANATUM workspace [8]. 

 
Fig. (1). Chemoinformatics tools available on LiSIs, each tool is under a specific layer. 
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 ChemSpider Molecule Retrieval: A component which given 
a file with molecules common name it uses ChemSpider API to 
retrieve information available for those molecules, and returns 
the result as a SMILES file. 

PRE-PROCESSING LAYER 

 The Pre-Processing Layer consists of the following four 
component categories: 
 Descriptors Calculation: This component provides tools 
for calculating various descriptors of chemical compounds. 
Currently the platform enables calculation of whole-
compound descriptors with the use of RDKit [29]. Example 
descriptors include molecular weight, number of hydrogen 
bond donors and acceptors, polar surface area, number of 
rings, calculated octanol - water partition coefficient 
(cLogP), molecular complexity based on the method 
proposed by Barone [30] and molecular flexibility, as well as 
molecular fingerprints which can be one of Morgan 
(circular) fingerprints [31], MACCS [32], Atom-Pair [33], 
Topological Torsion [34], and topological fingerprints, a 
Daylight like fingerprint based on hashing molecular sub-
graphs [35]. 
 Docking Preparation: This component provides the 
following tools: 
• 3D Coordinate Calculator: A tool for preparing 

compounds for docking experiments, by calculating 
their 3D coordinates and creating the appropriate files 
required by the docking software used by LiSIs. 

• Protein Cleaner: A tool provided by AutoDock, 
which is used to automate the process of cleaning a 
protein to create the required files used by AutoDock 
Vina [36, 37]. 

All the tools of this layer use as input and output 
binary files. 

PROCESSING LAYER 

 The Processing Layer consists of the following five 
component categories: 
 Attribute Filtering: This component provides tools for 
implementing compound selection filtering tuned on the 
compounds chemical and biological attributes. These 
components enable the user to pre-select ranges of 
acceptable values on available compound properties 
(including properties calculated by the Chemical Descriptors 
component and properties provided externally from the Data 
Input Layer). Three tools are available under this category, 
“Chemical Properties Filter”, “GRANATUM Ro5 Filter” 
and “Lipinski Ro5 Filter”. 
 Compound Similarity: This component provides tools for 
implementing filters for selecting compounds based on their 
chemical structure similarity to other compounds designated 
by the user. Two tools are available under this category, 
“Similarity Filter” and “Diversity Filter”. 
 “Similarity Filter” requires two input datasets; the one is 
used as the reference dataset and the other as the query  
 

dataset. The results are two datasets, which are subsets of the 
initial reference dataset, where the first one contains the 
compounds that are similar to the query dataset and the 
second one contains those that are not similar. 
 “Diversity Filter” on the other and requires only one 
input dataset and it generates two datasets where the first 
contains the compounds that are not similar among them and 
the second contains compounds that are similar among them. 
 Substructure Matching: This component provides tools 
for implementing filters for selecting compounds based on 
whether they contain (or not) the chemical substructure(s) 
designated by the user. 
 This tool requires as input one dataset of compounds and 
at least one substructure in SMiles ARbitrary Target 
Specification (SMARTS) format. 
 Docking Prediction: This component provides tools for 
implementing filters for selecting compounds based on 
predicted binding affinity of a compound to a target protein 
using in silico docking prediction. The LiSIs platform 
currently uses AutoDock Vina, a popular docking 
application, freely available to the academic research 
community. AutoDock Vina attempts to find the best 
receptor-ligand docking pose by employing a scoring 
function that takes into consideration both intramolecular 
and intermolecular contributions, as well as an optimization 
algorithm [36]. 
 Predictive Modelling: This component aims to provide 
the user with the tools to construct data-driven predictive 
models based on available information on a set of 
compounds. These models are used to predict biochemical 
properties of interest of new compounds and to select those 
with an acceptable profile. Our platform uses system’s 
underlying R installation to support the creation and reuse of 
predictive models. 
 This component makes use of four widely used 
predictive modelling algorithms by the chemoinformatics 
community: Decision Trees (DT), Random Forests (RF), 
Support Vector Machines (SVM), and k-Nearest Neighbours 
(k-NN) [38]. 
 Molecular Clustering: This component provides a 
unified interface to different molecular clustering methods 
such as Agglomerative Hierarchical Clustering, Divisive 
Hierarchical Clustering, k-Means Partitional Clustering and 
k-Medoids Partitional Clustering. The provided molecular 
clustering is based on fingerprint similarity or distance. 

POST-PROCESSING LAYER 

 The Post-Processing Layer consists of the following two 
component categories: 
 Output Reformatting: This component provides a tool to 
convert results in various formats supported by OpenBabel 
[39]. 
 Binary File Merging: This component provides a tool for 
merging binary files, containing chemical structure objects 
with processing component results, into one binary file. 
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OUTPUT LAYER 

 The Output Layer consists of the following component 
category: 
 Storage: This component covers the storage of results in 
various formats for future reuse and sharing. The tools 
available under this component category convert, binary files 
containing in silico molecules, to various file formats such as 
SMILES, SDF, CSV and Tabular. 

THIRD PARTY TOOLS USED BY LISIS 

 The LiSIs platform uses the following 3rd party tools that 
are freely available: 
 Galaxy [40-42], a web-based platform widely used in the 
biomedical community for intensive data processing and 
analysis, used for the customized SWMS platform; 
 RDKit [29], an open source chemoinformatics toolkit; 
 Pybel [43], a Python wrapper for the OpenBabel 
chemoinformatics toolkit [39], used for chemical file format 
transformations; 
 R [44], a statistical environment that supports data 
mining, machine learning and statistics based functionalities; 
caret (Classification and Regression Training) package [38] 
is used for the generation and reuse of Predictive Models and 
for Molecular Clustering; 
 AutoDock Vina [36, 37] docking application used to 
support docking experiments functionality. 

RESULTS 

Comparison with other open source Scientific Workflow 
Management Systems 

Taverna 

 Taverna is an open-source, grid-aware workflow 
management system [11-13]. It has found wide application 
in the bioinformatics, chemistry, data- and text-mining and 
astronomy communities although the system is domain 
independent. It is comprised of the Taverna Workbench 
graphical workflow authoring client, a workflow 
representation language, and an enactment engine. Taverna 
is implemented as a service-oriented architecture, based on 
web service standards. From the advent of its design Taverna 
was an application that applied web services technology to 
workflow design. That meant that tools created using 
different programming languages (e.g. Java, Perl, Python, 
etc.) or platforms (UNIX, Windows, etc.) could now be 
accessed via a web service interface eliminating any need for 
integration. The same applied to the databases available on 
the web. As a result, researchers could design and execute a 
pipeline of web services, with little programming 
knowledge. Its architecture supports parallelism, both intra-
process and inter-process, asynchronous service support and 
separation of data and process spaces to support scaling to 
arbitrary data volumes. 
 A vital component of Taverna’s open architecture is the 
plug-in functionality. Various plug-ins have been developed 
for accessing online bio-catalogues or for integrating 

chemoinformatics processing services. Provenance also 
plays an integral part in Taverna, allowing users to capture 
and inspect details such as who conducted the experiment, 
what services were used, and what results were produced. An 
additional strong feature of Taverna is workflow sharing. 
The users have direct access to the myExperiment [45] social 
collaboration site where they can upload or download 
workflows as needed. 

KNIME 

 Konstanz Information Miner (KNIME) is a modular 
environment that supports operations such as data integration 
from various sources, processing, modelling, analysing and 
mining, as well as parallel execution [14,15]. KNIME is 
primarily used in pharmaceutical research with some 
applications reported in other areas like customer resource 
management and data analysis, business intelligence and 
financial data analysis. It is an open-source platform free for 
non-profit and academic use. It is available as a local desktop 
application but additional features such as user 
authentication, web services integration, web browser 
interface, remote server and cluster execution are available in 
(and restricted to) the professional package. 
 The platform enables the user to visually assemble and 
execute data pipelines providing an interactive view of the 
results. KNIME pipeline(s) consist of modular independent 
components that combine different projects in a single 
pipeline. At the same time its expandable architecture 
enables the easy integration of newly developed tools. 
 One highlight of KNIME’s latest additions is the ability 
to support Predictive Model Markup Language (PMML) 
[46]. The PMML is an XML-based markup language that 
enables applications to define models related to predictive 
analytics and data mining and to share those models between 
PMML-compliant applications [47]. As a result a model 
developed by KNIME can be exported and then used in 
another data mining engine. Another characteristic is the 
addition of database ports that are JDBC-compliant that 
work directly in the database enabling even preview of the 
actual data inside the database tables [46]. 
 Although written in Java, KNIME, permits running 
Python, Perl and other code fragments through the use of 
special scripting nodes. This is extremely useful as the 
majority of scientific work is currently under the form of 
Python or Perl scripts. 
 KNIME functionality is enriched by integrating 
functionality of different data analysis open source projects 
for machine learning and data mining, for statistical 
computations and visualizations as well as many 
chemoinformatics plug-ins. 

Galaxy 

 Galaxy is a web-based platform for data intensive 
biomedical research [40-42]. It provides a framework for 
integrating computational tools and an environment for 
interactive data analysis, reuse and sharing. As stated in [40, 
41] the primary design considerations of Galaxy were 
accessibility, reproducibility and transparency. Galaxy is 
accessible to scientists with no programming knowledge 
through the use of Galaxy tools. It produces reproducible 
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computational analysis results by generating metadata for 
each analysis step through the automated production of 
Galaxy History items. It also promotes transparency by 
enabling the sharing of data, tools, workflows, results and 
report documents. 
 A structured well-defined interface allows the wrapping 
of nearly any tool that can be run from the command-line 
into a Galaxy tool. The platform is open source and has been 
designed specifically to meet the needs of bioinformaticians 
supporting sequence manipulation with built in libraries. It 
does not support any control flow operations or remote 
services. Additionally it does not use a workflow language 
but rather a relational database. The Galaxy workflow 
system allows for analysis using multiple tools incorporated 
to the system which may be built and run or extracted from 
past runs, and rerun. 
 Pages are a unique feature to Galaxy. They are online 
documents used to describe the analysis performed but also 
to provide links to the Galaxy objects that were used in the 
analysis, i.e. Histories, Workflows, and Datasets. This 
enables the reader of the document to have direct access to 
the dataset used, to import the workflow and reproduce the 
experiment himself. It also makes it even easier for another 
scientist to continue and build upon reported previous work. 
 A recent Taverna-Galaxy integration allows the 
generation of Galaxy tools from Taverna 2 workflows [48]. 
The tools can then be installed in a Galaxy server and 
become part of a Galaxy pipeline. Moreover, Galaxy 
workflows can be directly shared through the myExperiment 
site [49]. Galaxy can also be instantiated on cloud computing 
infrastructures and interfaced with grid clusters [50]. 

CONCLUDING REMARKS 

 KNIME is considered among the top open source 
software for chemoinformatics. Taverna is a prominent web 
service oriented platform employed in more than 350 
organizations around the world with frequent enhancements. 

Two recent ones being Taverna Mobile and Taverna On-line 
(under development) [51]. Galaxy is a promising platform 
where the online features prevail as unique among the three 
systems. 
 Galaxy offers additional benefits due to its online nature. 
There is no need to set up installations on local machines or 
remote servers, no downloads, no conflicts and no updates to 
worry about. All tools are available at any personal computer 
from anywhere in the world provided that they are connected to 
the internet. The same applies to data. A scientist can import 
data in the system and process them with the appropriate 
workflow or design a new one. Moreover the data and work are 
secure and can be backed up and protected depending on user 
preferences and specific system specifications. Importantly, all 
data and work can be shared with other collaborators in real 
time. Galaxy can even offer the more advanced features such as 
transparent access to grid services or the cloud, thus, offering 
speed and efficiency for scientific processes that are 
computationally expensive and/or data intensive. 
 Table 1 is a comparison of LiSIs (Galaxy) to KNIME and 
Taverna platforms. This comparison is focused on their 
system level and their deployment details. 

CASE STUDY: QSAR MODEL FOR MUTAGENICITY 

 LiSIs was used to create a QSAR model for Mutagenicity 
to predict mutagenic and non-mutagenic compounds. 
 The process of creation and validation of QSAR models 
in LiSIs can be summarized in four distinct steps: 

Datasets Loading on LiSIs Platform 

 Two datasets are needed for training a QSAR model. A 
dataset containing chemical information of the compounds 
either in SMILES or SDF format (see “SMI/SDF File 
Reader”), and a dataset containing the biological information 
of the compounds (see “Property File Reader”). 

Table 1. Comparison of free scientific workflow management systems used in virtual screening process. 
 

 KNIME Taverna LiSIs 

System Details 

Software Platform KNIME Taverna + myExperiment Galaxy (Modified) 

OS Requirements Cross Platform Cross Platform Linux 

Web based No (Desktop based) No (Desktop based) Yes 

Cluster deployment difficulty Moderate (Need license) Moderate Moderate 

Cloud deployment difficulty High Moderate Low 

Open Source Yes Yes Yes 

Tool development difficulty Moderate Moderate Low 

Tools Details 

Chemoinformatics Packages CDK, RDKit, OpenBabel, Indigo, EMBL-EBI, Vernalis, Enalos, etc. CDK RDKit, In-house tools 

Machine Learning Tools Weka, R R R 

Docking Tools Available with commercial license Not Available AutoDock Vina 

2D/3D Visualization Tools Available Available Not Available 

Community size Very Large Very Large Large (Galaxy) 



LiSIs: An Online Scientific Workflow System for Virtual Screening Combinatorial Chemistry & High Throughput Screening, 2015, Vol. 18, No. 3    7 

Chemical and/or Structural Descriptors Calculation 

 Chemical and structural descriptors are the features of the 
compounds. LiSIs provides a tool to calculate a specific set 
of chemical descriptors (see “Descriptor Calculator”) and a 
tool for calculating a specific set of structural descriptors 
(fingerprints) (see “Fingerprint Calculator”). 
1. Model(s) training and validation: 
 During the training process the algorithm used strives 

to correlate the calculated descriptors for each 
compound with its biological or chemical 
property/activity. Training is usually followed by 
validation; the process by which the robustness and 
prediction performances of the QSAR model(s) are 
established. LiSIs performs those two processes in 
tandem, while at the same time tries to optimize the 
algorithm that does the prediction for its main tuning 
parameter. To achieve this LiSIs employs learning 
algorithms provided by the R environment. LiSIs 
currently supports four tools to create a QSAR model 
based on different algorithms: 
a. k-Nearest Neighbours: 

 Description: A compound is classified by a majority 
vote of its k nearest neighbours. 

 Tuning variable: Number of neighbours (k). 
b. Support Vector Machines: 

 Description: An SVM model is a representation of the 
training data as points in space, mapped so that the 
different compound classes are divided by a gap that 
is as wide as possible. New compounds are projected 
into that same space and predicted to belong to a class 
based on which side of the gap they are placed. 

 Tuning variable: Soft margin (C). 
c. item Decision Trees: 

 Description: Recursive partitioning builds a decision 
tree that uses several dichotomous dependent 
variables to try and classify chemical compounds. 

 Tuning variable: Complexity (cp). 
d. Random Forests: 

 Description: Random forests are an ensemble method 
that, during training, builds a large number of 
decision trees that utilize a specified number of 
random descriptors. The final prediction is the mode 
of the predictions by the individual trees. 

 Tuning variable: Number of variables randomly 
sampled as candidates at each split (mtry). 

 Cross-validation is a model validation technique to assess 
how the results of a predictive model will generalize to an 
independent data set. In general, cross-validation partitions 
the sample into training and test sets using the former to 
build the model and the latter to assess its performance. The 
procedure is performed multiple times and the final 
validation results are the average of the repeats. 
Alternatively, LiSIs offers the option to create bootstraps out 
of the original data as training sets while using the original 
data as the test set. The available algorithms provide 
different cross-validation options, such as: 

a. Bootstrapping 
b. 0.632+ bootstrapping: An improvement of the classic 

bootstrapping designed to correct the bias introduced 
by including data points of the test set into the 
training set. 

c. k-Fold Cross-Validation 
d. k-Fold Cross-Validation done multiple times 
e. Leave One out Cross-Validation 
f. Leave Group out Cross-Validation: This method is 

repeated splitting of the data into training and test sets 
(without replacement). 

 Best model selection can be performed by using one of 
the available tuning metrics: 
a. Accuracy 
b. Area Under the Curve 
c. Cohen’s Kappa 
d. Sensitivity 
e. Specificity 
1. Model(s) Annotation and Publishing: 
 Once the QSAR model is created and validated the 

user has the option to make it publicly available to the 
rest of the LiSIs’ users. The model can then be 
utilized by the “Property Predictor” tool to filter-out 
compounds predicted to lack or possess specific 
properties. The user can mix and match several 
models in a side-chain fashion to substantially reduce 
the number of compounds that will be tested in vitro 
and to enhance the enrichment ratio of the original 
data set. Prior to publishing the user is encouraged to 
annotate the QSAR model with some essential info 
such as the data source, validation performance, the 
classifying algorithm and the value of its tuning 
parameter, etc. 

 The procedure described above was used to train and 
validate four QSAR models for Mutagenicity, using DT, 
kNN, RF and SVM algorithms respectively, from which we 
later selected the best. 
 The input dataset used was the AMES Mutagenicity 
dataset available at [52] that consists of 6512 molecules, out 
of which 3503 are mutagenic (positive) and 3009 non-
mutagenic (negative). 
 Fig. (2) illustrates the workflow that has been used to 
train the QSAR model. This workflow creates four QSAR 
models using the all available algorithms. The models use 
the same train and test datasets, and specific configuration 
depending on the algorithm used in each case. At the end the 
workflow provides an aggregated report in order to identify 
the best QSAR model. When the user decides which of the 
four models is the best then he/she can annotate it 
accordingly. 
 Fig. (3) illustrates the workflow that should be used when 
you want to predict mutagenicity using this Mutagenicity 
QSAR model. The key point in this workflow is that the 
steps of “Descriptor Calculator” and “Fingerprint  
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Fig. (2). LiSIs workflow for case study: “QSAR model for Mutagenicity”. 

 
Fig. (3). LiSIs workflow for predicting mutagenicity used in case study: “QSAR model for Mutagenicity”. 
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Calculator” must have the same input parameters as the ones 
used at the same steps in the QSAR model training workflow 
illustrated in Fig. (2). At the step “Property Predictor” the 
second input should be the previously trained QSAR model 
for Mutagenicity. 
 Table 2 shows the final details of the trained 
Mutagenicity QSAR model using LiSIs alongside with the 
details of the reference mutagenicity QSAR model by 
Hansen et al. [53]. 

CONCLUDING REMARKS 

 LiSIs provides an easy and simple way to train and 
validate QSAR models using the server’s underlying R 
installation. Despite the fact that it provides a limited range 
of classification algorithms, the ones available are the most 
commonly used. 
 In this case study we used LiSIs to show its ability and 
potential in training and using QSAR models. For the 
purpose of this case study we used the AMES Mutagenicity 
dataset to train a Mutagenicity QSAR model and compare it 
with the one proposed by Hansen et al. in [53]. 
 As shown in Table 2 the QSAR model for Mutagenicity 
trained with LiSIs is comparable with the one proposed by 
Hansen et al., despite the fact that the descriptors used are 
obtained from different software. 

Case Study: Identify Natural Compounds Able to Bind to 
Estrogen Receptor-α (ER-α) and/or Estrogen Receptor-β 
(ER-β) 

 LiSIs has been used for the implementation of a VS 
experiment in order to identify natural compounds able to 

bind to Estrogen Receptor-α (ER-α) and/or Estrogen 
Receptor-β (ER-β). 
 Fig. (4) illustrates the complete workflow used by LiSIs for 
the showcase described. At the Input Layer, parsing of the input 
datasets takes place. To start with the initial datasets in SMILES 
format include 2414 compounds from Indofine chemical 
company [56], 55 compounds characterized by Medina-Franco 
et al. [57] and 21 known ER ligands retrieved from PubChem 
[58], shown in Table 3, which were used as a positive control 
dataset for the validation of docking tools. Tools were used to 
read chemical input files and create compound object structures 
for further processing by the Pre-Processing and Processing 
Layers. The total number of unique compounds pushed to the 
next layer were 2413 from Indofine (one was found to contain 
erroneous molecular information), 54 from Medina-Franco (two 
were found to be similar) and 21 from PubChem’s ER agonists 
and antagonists (one was found to contain two disconnected 
fragments), datasets for a total of 2488 compounds. 
 At the Pre-Processing Layer (see Fig. 4), a set of 
physiochemical molecular descriptors were calculated 
including Molecular Weight, Hydrogen Bond Donors, 
Hydrogen Bond Acceptors, Topological Polar Surface Area 
and Octanol - Water Partition coefficient (cLogP). 
 At the Processing Layer, the following tools were used: 
• GRANATUM Rule of Five (Ro5) filter (see Fig. 4 

Processing Layer): Molecular Weight between 160 
and 700, Hydrogen Bond Donors less or equal to 5, 
Hydrogen Bond Acceptors less or equal to 10, 
Topological Polar Surface Area less than 140, and 
Octanol - Water Partition coefficient (cLogP) 
between -0.4 and 5.6. 

 

Table 2. Mutagenicity QSAR models comparison, LiSIs versus reference. 
 

Mutagenicity QSAR Model Properties 

Description A model for predicting mutagenicity of compounds 

Dataset Details 6512 compounds, 3503 mutagenic, 3009 non-mutagenic 

Classes Mutagenic (positive), Non-mutagenic (negative) 

 LiSIs Reference QSAR Model by Hansen et al. A 

Chemical Descriptors Molecular Weight, Hydrogen Bond Acceptors, 
Hydrogen Bond Donors, cLogP, Topological 
Surface Area, Molecular Complexity, Number 
of Rings, Molecular Flexibility 

Molecular descriptors were selected from blocks 1, 2, 6, 9, 
12, 15, 16, 17, 18, and 20 of DragonX version 1.2 B based 
on a 3D structure generated by Corina version 3.4 C 

Fingerprint Descriptors Morgan (circular) Fingerprints 
Size: 512 bits 
Format: Bit-vector 
Radius: 3 
Includes chemical features 

Not Used 

Algorithms Used 

Support Vector Machines Support Vector Machines 

Decision Tree Gaussian Process 

Random Forests Random Forests 

k-Nearest Neighbours k-Nearest Neighbours 

Algorithm with best performance Random Forest Support Vector Machines 

Performance 
Sensitivity = 0.82 Sensitivity = 0.88 

Specificity = 0.80 Specificity = 0.64 
A. [53]. 
B. [54]. 
C. [55]. 
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Table 3. Known ER ligands used as positive controls for the validation of the in silico results. 
 

A/A Estrogen Ligand Docking Score ER-α Docking Score ER-β 

1 Raloxifene -11.70 -8.72 

2 Lilly-117018 -11.53 -3.80 

3 3-HydroxyTamoxifen -11.02 N/A 

4 Nafoxidine -10.88 N/A 

5 ICI-182780 -10.73 N/A 

6 Pyrolidine -10.04 N/A 

7 Clomiphene A -10.01 N/A 

8 Nitrofinene Citrate -9.87 N/A 

9 ICI-164384 -9.82 -9.13 

10 Moxestrol -9.38 -9.77 

11 Naringenine -8.55 -7.80 

12 Triphenylethylene -8.50 N/A 

13 Afema -8.15 -7.78 

14 Danazol -6.99 N/A 

15 Ethamoxytriphetol -6.67 N/A 

16 4-HydroxyTamoxifen -6.60 N/A 

17 Dioxin -6.22 N/A 

18 Estralutin -5.86 -3.80 

19 Cyclopentanone -4.88 N/A 

20 Miproxifene Phosphate -4.48 N/A 

21 EM-800 N/A N/A 

 

 
Fig. (4). LiSIs workflow for case study: “Identify natural compounds able to bind to Estrogen Receptor-α (ER-α) and/or Estrogen Receptor-β 
(ER-β)”. 
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 This filter was defined by CPR experts participating 
to the GRANATUM project [8]. 

 The filtering resulted in 1834 compounds with CPR-
like features and 654 compounds without CPR-like 
features. The compounds with CPR-like features were 
pushed for docking experiments. 

• Docking experiment against ER-α and ER-β (see Fig. 
4 Processing Layer): 

 LiSIs uses AutoDock Vina [36, 37] and has been 
setup to provide us with the maximum docking 
affinity score. The current key aim of the 
GRANATUM project was to identify ER-α 
antagonists and ER-β agonists. Docking experiments 
on the filtered combined dataset have been performed 
by employing receptors ER-α 3ERT [PDB:3ERT] and 
ER-β 1X7J [PDB:1X7J]. The appropriate Docking 
Models were created using protein structures obtained 
from the PDB database [59] and related LiSIs tools 
for automated Protein Cleaning (see Fig. 4 Pre-
Processing Layer) and Docking Model Preparation. 

 Fig. (5A) is a graphical representation of the docking 
affinity score predicted by LiSIs docking experiment tool for 
ER-α, and Fig. (5B) is a graphical representation of the 
docking affinity score predicted by LiSIs docking 
experiment tool for ER-β. The predicted binding affinity 
scores of the known ER inhibitors (see Table 3), depicted 
with red colour in Fig. (5), indicate the validity of the 
docking models prepared and the ability of these models to 
assign a lower score to inhibitors and reproduce ground 
truth. The cyan dots represent DNMT inhibitors 
characterized in [57]. The lower (most negative) the value of 
the docking score is, the higher the binding affinity. 
Consequently, the models are applicable in a VS context, i.e. 
for the prioritization of unknown compounds based on their 
predicted binding affinity to estrogen receptors. 

 Finally a selection of molecules highly ranked was hand-
picked; a small sample of those is shown in Table 4. These 
molecules have undergone in vitro investigation to provide 
feedback for the calibration of the tools used by LiSIs 
platform and also to select a small set for further research. 
 As shown in Table 4, three novel flavones, 3’,4’-
dihydroxy-a-naphthoflavone (Compound 2), 3,5,7,3’,4’-
pentahydroxyflavanone (Compound 5), and 4’-hydroxy-a-
naphthoflavone (Compound 6) were among those with high 
binding scores for ER-α and ER-β as indicated from the in 
silico docking score. Flavones, a class of flavonoids, have 
previously been demonstrated to possess estrogenic activity 
in a number of hormonally responsive systems. Their 
estrogenic and antiestrogenic activities appear to correlate 
directly with their capacity to displace Estradiol from ER 
[60]. Our in vitro results showed that Compound 2 had the 
highest affinity for both receptors while Compound 5 also 
displayed similar affinity for both ER-α and ER-β. However 
Compound 6 was found to bind only weakly to ER according 
to the binding affinity assay. Furthermore, results from the in 
silico experiments showed that three previously not 
investigated coumarins, 3(2’-chlorophenyl)-7-hydroxy-4-
phenylcoumarin (Compound 3), 3(3’-chlorophenyl)-7-
hydroxy-4- phenylcoumarin (Compound 4) and 4-benzyl-7-
hydroxy-3-phenylcoumarin (Compound 7) can potentially 
bind ER-α and ER-β based in their docking scores. 
Coumarins are natural or synthetic benzopyranic derivatives 
that form a family of active compounds with a wide range of 
pharmacological properties, including estrogen-like effects 
[61]. In vitro results showed that Compound 3 has greater 
affinity for ER-α while Compound 4 can bind with high 
affinity to both receptors. However, Compound 7 was not 
able to bind to either receptor as determined by the ER 
binding affinity assay. 
 

 

 
Fig. (5). Compounds were tested against ER-α (A) and ER-β (B) using in silico docking tools. 
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Table 4. Selection of highly ranked compounds from the final virtual screening results. 
 

A/A Chemical Structure Molecular 
Weight (g/mol) 

Concentration 
(µM) 

ER-α LDB ER-β LDB 

Binding 
Affinity 

Docking 
Score 

Binding 
Affinity 

Docking 
Score 

1 

 

272.38 10 1 -9.4 1 -10 

2 

 

304.29 
1 

10 
0.11 
0.22 

-7.59 
0.05 
0.34 

-10.39 

3 

 

348.78 
1 

10 
0.21 
2.71 

-9.73 
N/A 
0.34 

-10.03 

4 

 

348.78 
1 

10 
0.24 
2.23 

-10.34 
0.13 
2.75 

-9.67 

5 

 

304.26 
1 

10 
N/A 
0.27 

-8.81 
0.06 
0.18 

-9.61 

6 

 

228.29 
1 

10 
N/A 
N/A 

-8.18 
0.05 
N/A 

-9.88 

7 

 

328.37 
1 

10 
N/A 
N/A 

-10.13 
N/A 
N/A 

-9.13 

OH

HO H

HH
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3(3'-chlorophenyl)-7-hydroxy-4-phenylcoumarin
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O

O

HO

OH

OH

3,5,7,3',4'-pentahydroxyflavanone

O
HO

O

4'-hydroxy-a-naphthoflavone

O OHO
4-benzyl-7-hydroxy-3-phenylcoumarin
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CONCLUDING REMARKS 

 In recent years, many high-throughput methods have 
been established in the effort to identify novel Estrogen 
Receptor binders with anticancer activity. However, in vitro 
assays often produce disappointing results due to the small 
percentage of novel active Estrogenic compounds 
discovered. To identify novel compounds that act as 
effective ER-α co-activator binding inhibitors (CBIs), 
Gunther et al. applied a time-resolved fluorescence 
resonance energy transfer (TR-FRET) assay developed in a 
384 well format [62]. This assay measures the binding of a 
Cy5-labelled SRC-1 nuclear receptor interaction domain to 
the ligand binding domain (LBD) of labelled ER-α leading to 
TR-FRET signal generation. Compounds that interfere with 
the TR-FRET signal are identified as potential CBIs or 
conventional ligand antagonists. Based on this method, only 
1.6% of the total compounds screened were identified as 
active as reported in (Pubchem ID 629).	  
 In the present study, we used a VS workflow 
implemented using the LiSIs platform to screen the Indofine 
database of 2413 compounds. Based on their drug-like 
criteria and docking results we selected 18 potential ER 
ligands. These were further investigated in vitro with the ER 
binding assay described by Gurer-Orhan et al. [63] with 
minor modifications. In this manner it was found that five 
agents displayed strong affinity for ER-α, three showed 
selectivity for ER-β and seven were able to bind to both 
receptors with similar affinity. In total 15 out of 18 
compounds (83.3%) were experimentally confirmed active. 
Therefore, the use of LiSIs system may allow researchers to 
execute complex biomedical studies and in silico 
experiments on largely available and high quality data 
repositories in order to facilitate the selection and prioritize 
the investigation of novel chemopreventive compounds in 
vitro. 
 Compounds with high binding affinity to the ERs based 
on the in silico results, display structural characteristics that 
are similar to Estradiol-17β (E2). All contain a phenolic ring 
which is indispensable for binding to the estrogen receptor 
[64]. The phenolic ring of Compounds 2 - 7 contains at least 
one hydroxyl group which mimics the 3’-OH of E2. 
Furthermore, all compounds have low molecular weight 
comparable to that of E2 (Molecular Weight equal to 272). 
All agents are highly hydrophobic which is required for 
binding in the ER binding pocket [65]. The differences 
observed in the binding affinities of compounds may be 
attributed to differences in structural characteristics. The 
lower ER binding affinity of Compound 5 (when compared 
to Compound 2) may be attributed to the hydrophilic 
hydroxyl group at C-11 of Compound 5 which, due to steric 
hindrance, lowers its binding affinity for both receptors [65]. 
 The LiSIs platform aims to fill the current void in the 
application of advanced chemoinformatics and 
computational chemistry technology in determining efficacy 
and predicting possible mechanism of action or identifying a 
possible receptor for a chemopreventive agent in life 
sciences research. Its successful deployment may have a 
substantial impact on enabling biomedical researchers to 
utilize state of the art computational techniques to search for 
promising chemical compounds that may lead to the 

discovery of novel agents with chemopreventive properties. 
We have shown in this paper that by utilizing the LiSIs 
platform in conjunction to a widely used docking program 
we identified compounds that can bind to ER-α and/or ER-β 
with a high degree of success rate. This in silico approach is 
expected to facilitate the process of identification of lead 
compounds with estrogenic or anti-estrogenic activity and to 
enhance considerably the discovery process for new 
therapeutic agents. 

CONCLUSION 

 In recent years, scientific workflow systems have been 
increasingly used by the chemoinformatics community. 
Several systems, both commercial and free, have been 
introduced with custom components catering to the needs of 
the drug discovery community and numerous applications 
have been described in the literature. In this paper we 
introduced LiSIs, a new SWMS platform designed and 
implemented to provide advanced computational chemistry 
and information technology tools in an online environment. 
 LiSIs enables the use of state of the art computational 
algorithms and techniques to design and implement solutions 
by reusing open source community tools such as RDKit [29], 
R [44] and AutoDock Vina [36, 37] to complement in-house 
code. Consequently, LiSIs users have access to numerous 
methods that enable operations such as molecular descriptor 
calculation, predictive model generation and use and docking 
experiments, among others. It is worth noting that, due to its 
online nature, LiSIs models, workflows and results can be 
easily shared with other platform users. 
 Future work will focus on current system limitations. 
Indicatively, LiSIs has limited visualization capabilities 
which need to be augmented and, certain components, such 
as the protein cleaner tool, need to be further expanded. 
System scalability is also a concern since the current 
infrastructure, which is limited to a single server with 12 
processing cores and 16 GB of memory, will inevitably 
become a bottleneck as the system becomes more popular. 
We also intend to incorporate tools implementing multi-
objective ranking and optimization methods to LiSIs in order 
to enable the consideration of multiple pharmaceutically 
important properties to VS and other library design 
experiments [66]. 
 The potential of LiSIs has been highlighted through two 
case studies designed to illustrate the preparation of tools for 
the identification of promising chemical structures. The first 
case study involved the development of a QSAR model on a 
literature dataset while the second implemented a docking-
based virtual screening experiment. Our results show that VS 
workflows utilizing docking, predictive models and other in 
silico tools as implemented in the LiSIs platform can identify 
compounds in line with expert expectations. For example, 
our experiments provided a chemical structure set that, once 
experimentally tested, was found to bind to ER-α and/or ER-
βwith a high degree of success as computationally predicted. 
 Moreover, the ability to readily share knowledge between 
researchers in the form of models, workflows, experimental 
data and results was found to be an additional beneficial 
feature that facilitated collaboration between distributed 
partners and, thus, the generation of new knowledge. 
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 In conclusion, we have shown that LiSIs facilitates the 
discovery of cancer chemopreventive agents. We anticipate 
that the deployment of LiSIs, as currently implemented and 
available for use, can enable drug discovery researchers to 
more easily use state of the art computational techniques in 
their search for promising chemical compounds. 
 LiSIs is available as a web based application, accessed 
directly at [7] and also under the GRANATUM platform at 
[8]. 

ABBREVIATIONS 

CBIs = Co-activator Binding Inhibitors; 
CPR = Chemoprevention research; 
DDP = Drug Discovery Process; 
DT = Decision Trees; 
ER = Estrogen Receptor; 
k-NN = k-Nearest Neighbours; 
KNIME = Konstanz Information Miner; 
LBD = Ligand Binding Domain; 
LiSIs = Life Sciences Informatics; 
PDB = Protein Data Bank; 
PMML = Predictive Model Markup Language; 
QSAR = Quantitative Structure Activity Relationship; 
RF = Random Forests; 
SDF = Structure Data File; 
SMARTS = SMiles ARbitrary Target Specification; 
SMILES = Simplified Molecular Input Line Entry 
Specification; 
SW = Scientific Workflows; 
SWMS = Scientific Workflow Management Systems; 
TR-FRET = Time-Resolved Fluorescence Resonance 
Energy Transfer; 
VS = Virtual Screening. 
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