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The patent presents 140 purine and 7-azapurine derivatives as potent inhibi-

tors of DOT1L histone methyltransferase that might be useful in the treatment

of leukemia with MLL rearrangements. It is becoming more and more evident

that the deregulation of chromatin modifiers such as DOT1L plays a critical

role in tumorigenesis. As yet, the number of pharmaceutical agents targeting

chromatin modifiers is still limited. The market for such compounds has been

estimated to be potentially as large as one third of all cancer patients. Overall,

the prospective of a targeted product (i.e., a drug targeting a commonly

affected chromatin modifier) is very promising, and exponentially growing

investments into this market are anticipated.
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1. Introduction

The term “epigenetics” refers to modifications in gene expression caused by heritable,
but potentially reversible, changes in DNA methylation and chromatin structure [1].
An important level of regulation is embedded in the accessibility of genomic regions
controlled by the chromatin structure. Epigenetic mechanisms that modulate chro-
matin accessibility include DNA methylation and post-translational modifications
of amino acid residues in histone tails, such as acetylation, phosphorylation, methyl-
ation and others [2]. The methylation of certain lysine residues is mediated by histone
lysine methyltransferases (HMTs) that transfer a methyl group from S-adenosyl-L-
methionine (SAM) to histone lysine residues. HMTs can be classified as proteins
containing either a catalytic SET domain or the Dot1 (disruptor of telomeric silencing)-
like (DOT1L, also known as KMT4) histone H3 methyltransferase that does not
contain a SET domain [3]. DOT1L is the only known methyltransferase that
methylates lysine 79 of histone 3 (H3K79) [4], generally related to transcriptional
activation [5].

DOT1L plays an important role in the oncogenesis of leukemias associated with rear-
rangements of MLL (Mixed Lineage Leukemia, KTM2A) [6,7]. TheMLL gene is located
on chromosome 11q23, where rearrangements are found in >70% of infant leukemias
and in about 10% of adult acute myeloid leukemias (AML) [8]. As a member of the tri-
thorax group of proteins MLL normally acts in protein complexes that exhibit histone
3 lysine 4 (H3K4) methyltransferase activities. In case of rearrangedMLL, fusion proteins
are formed [9,10] that mediate a novel physical interaction with DOT1L. Consequently,
transformation of hematopoietic progenitors by the fusion protein MLL-AF10 were
shown to depend on aberrant H3K79 methylation mediated by DOT1L [7,11].
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Children with MLL-rearranged acute lymphoblastic leuke-
mia (ALL) exhibit poor clinical outcome due to a high relapse
rate on conventional chemotherapy, and there is an urgent
clinical need for novel therapeutic approaches targeting this
high-risk patient population. Therefore, DOT1L could pro-
vide an important therapeutic target in MLL-rearranged
leukemias. Development and use of inhibitors of DOT1L
activity is subject of the present patent application [12].

2. Chemistry

Recent crystallographic studies have revealed that in com-
parison to SET-domain HMTs binding of SAM to
DOT1L is unique [3,4]. This provides means of designing
drugs that specifically inhibit DOT1L activity, but not other
SET-domain HMTs. Several earlier studies have reported
the synthesis and characterization of small molecule inhi-
bitors of DOT1L partly active at subnanomolar concen-
trations, including the development of EPZ004777 first
described by Daigle et al. [13,14], S-adenosyl-L-homocysteine
(SAH) mimetics synthesized by Yao et al. [15], aminonucleo-
side inhibitors by Basavapathruni et al. [16] and a series of 58
adenosine-containing compounds (examples in Figure 1) [17].
The present patent application describes the synthesis of

substituted purine and 7-deazapurine compounds containing
ribose or cyclopentane moieties as shown in the generic struc-
ture of Claim 1 (Figure 2). With this generic structure, the
authors stake a claim to the chemical space of interest. To con-
firm the structures as to be patentable the syntheses of
140 compounds are presented. This includes the preparation
of required starting material as well as the detailed descriptions
for several compounds including analytical data. As an exam-
ple, the synthesis of compound 2 is outlined in Figure 3. It
starts with a reductive amination of the cyclobutane spacer

yielding a cis/trans mixture, which has to be separated through
chiral HPLC. The cis compound is then N alkylated. Reduc-
tion and elongation of the side chain, reduction of the double
bond and cleavage of the ester is straight forward. The benzo-
imidazol ring is formed in a two-step synthesis without isola-
tion of the amide. Finally compound 2 is isolated after acidic
cleavage of the acetal of the ribose. Overall, this synthesis takes
nine steps with an overall yield of less than 0.5 % which might
be disadvantageous in terms of bulk synthesis.

The International Search Report for the application cites
only one document defining the general state of the art.
Thus, the application seems to be new and inventive. Epi-
zyme, Inc. (Cambridge, MA, USA) has filed a series of related
patent applications [18-20]. They differ in extend of the covered
chemical space, but describe similar nucleoside moieties that
might be the active part of the molecules.

3. Biology and action

The applicants provide two examples related to biological activ-
ities of the described compounds. To determine DOT1L inhib-
itory potential, recombinant human DOT1L is incubated with
3[H]-labeled SAM, nucleosomes and serial dilutions of inhibi-
tors in a standard assay as described previously [13]. Incorpo-
rated radioactivity is measured to compute half maximal
inhibitory concentrations (IC50 values). In total, 133 com-
pounds are tested in a dose-dependent manner (Table 1). Com-
pound 2 (Figure 3) showing an in vitro IC50 of 0.74 nM for
DOT1L is further investigated for its effects on cell prolifera-
tion of various human leukemia cell lines. Cell viability is deter-
mined by cell counting in the presence of two fluorescent dyes
that discriminate non-viable and viable cells [13]. Compound
2 potently inhibits viability of three out of four MLL-
rearranged leukemia cell lines at nanomolar concentrations. In
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Figure 1. Chemical structures of published DOT1L inhibitors EPZ004777 (2) from Ref. [13], (3) from Ref. [15] and (4) from

Ref. [17], in comparison with S-adenosyl homocysteine (1).
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contrast, IC50 values for the RS4; 11 cell line harboring aMLL-
AF4 rearrangement and five non-MLL-rearranged cell lines are
at least 1--3 orders of magnitude higher.

Compound 2 is further tested in an in vivo xenograft model
with the MV4-11 MLL-rearranged cell line essentially as
described previously [13]. Animals bearing small tumors of
about 100 mm3 size are treated in groups of 20 animals,
except for one control group with only 8 animals. The com-
pound is constantly delivered subcutaneously (sc) by mini-
pumps at two doses of 112 and 56 mg/kg bodyweight/day
over a period of 21 days. One group exposed to 112 mg/kg/day

received an additional 20 mg/kg three times a day intraperi-
toneally (ip; total dose 172 mg/kg/day). The highest dose of
compound 2 (172 mg/kg/day) significantly inhibits tumor
growth by about 67%. Average steady state plasma concentra-
tions of compound 2 after continuous sc application are in
the range of 99--152 ng/ml for the 112 mg/kg/day group
and 52--238 ng/ml for the 56 mg/kg/day dose group. Addi-
tional ip injections significantly increase plasma levels in a
time-dependent manner.

Overall, the examples demonstrate as a proof of principle that
substituted purine and 7-deazapurine compounds potently
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A is O or CH2;

Q is H, NH2, NHRb, NRbRe, OH, Rb, or ORb, in which each of Rb and Re independently is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8

cycloalkyl, C6-C10 aryl, 4 to 7-membered heterocycloalkyl, 5 to 10-membered heteroaryl, or -M1-T1 in which M1 is a bond or C1-C6 alkyl linker
optionally substituted with halo, CN, OH or C1-C6 alkoxyl and T1 is C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, or 5 to 10-
membered heteroaryl, or Rb and Re, together with the N atom to which they attach, form 4 to 7-membered heterocycloalkyl having 0 or 1 additional
heteroatoms to the N atom optionally substituted with C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo, OH, carboxyl, C(O)OH, C(O)O-C1-C6 alkyl,
OC(O)-C1-C6 alkyl, CN, C1-C6 alkoxyl, NH2, mono-C1-C6 alkylamino, di-C1-C6 alkylamino, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered
heterocycloalkyl, or 5 to 6-membered heteroaryl, and each of Rb, Re, and T1 is optionally substituted with one or more substituents selected from the
group consisting of C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, halo, OH, C(O)OH, CN, C1-C6 alkoxyl, NH2, mono C1-C6 alkylamino, di-C1-C6

alkylamino, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, and 5 to 6-membered heteroaryl;

X is N or CRx, in which Rx is H, halo, OH, C(O)OH, CN, or RS1, RS1 being amino, C1-C6 alkoxyl, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8

cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, or 5 to 6-membered heteroaryl, and RS1 being optionally substituted with one or more
substituents selected from the group consisting of halo, OH, C(O)OH, CN, C1-C6 alkoxyl, NH2, mono-C1-C6 alkylamino, di-C1-C6 alkylamino, C3-C8

cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, and 5 to 6-membered heteroaryl;

Y is H, Rd, SO2Rd, or CORd, Rd being C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl,
or 5 to 6-membered heteroaryl, and Rd being optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl,
C2-C6 alkenyl, C1-C6 alkynyl, halo, OH, C(O)OH, CN, C1- C6 alkoxyl, C1-C6 alkylsulfonyl, NH2, mono-C1-C6 alkylamino, di-C1-C6 alkylamino, C3-C8

cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, and 5 to 6-membered heteroaryl and each of which C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-
membered heterocycloalkyl, and 5 to 6-membered heteroaryl substituents on Rd is further optionally substituted with C1-C6 alkyl, C2-C6 alkenyl,
C2-C6 alkynyl, halo, OH, carboxyl, C(O)OH, C(O)O-C1-C6 alkyl, OC(O)-C1-C6 alkyl, cyano, C1-C6 alkoxyl, amino, mono-C1-C6 alkylamino, di-C1-C6

alkylamino, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, or 5 to 6-membered heteroaryl;

each of R1 and R2 independently, is H, halo, OH, C(O)OH, CN, RS2, RS2 being NH2, C1-C6 alkoxyl, C1-C6 alkyl, C2-C6 alkenyl, or C2-C6 alkynyl, and
each RS2 being optionally substituted with one or more substituents selected from the group consisting of halo, OH, C(O)OH, CN, C1-C6 alkoxyl,
NH2, mono-C1-C6 alkylamino, di-C1-C6 alkylamino, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, and 5 to 6-membered
heteroaryl;

each of Re, Rf, Rg, and Rh, independently is -M2T2, in which M2 is a bond, SO2, SO, S, CO, CO2, O, O-C1-C4 alkyl linker, C1-C4 alkyl linker, NH, or
N(Rt), Rt being C1-C6 alkyl, and T2 is H, halo, or RS4, RS4 being C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 8-
membered heterocycloalkyl, or 5 to 10-membered heteroaryl,

and each of O-C1-C4 alkyl linker, C1-C4 alkyl linker, Rt, and RS4 being optionally substituted with one or more substituents selected from the group
consisting of halo, OH, C(O)OH, CN, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxyl, amino, mono-C1-C6 alkylamino, di-C1-C6

alkylamino, C3-C8 cycloalkyl, C6-C10 aryl, 4 to 6-membered heterocycloalkyl, and 5 to 6-membered heteroaryl, and
m is 0, 1, or 2.

Figure 2. Generic structure with a description of substituents accounting for the variation of attached moieties A, Q, X, Y, R1,

R2, Re to Rh and m to the core structure.
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inhibit DOT1L activity in vitro. Further, it is shown that com-
pound 2 (selected as a representative) inhibits proliferation of
leukemia cell lines with DOT1L-activating MLL rearrange-
ments in vitro and in vivo comparable to EPZ004777 [13,16].
There might be theoretical concerns with respect to inhib-

iting DOT1L pharmacologically: since DOT1L is the only

known H3K79 methyltransferase, its inhibition might have
detrimental effects not only on cancer cells but also on the
surrounding healthy cells. According to published data on
the DOT1L-inhibitor lead-compound EPZ004777 this does
not seem to be the case [13], and the fact that non-MLL-rear-
ranged tumor cell lines are not sensitive to compound
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2 further supports this view. Notably, Epizyme has recently
initiated a phase 1 clinical trial (ID: NCT01684150) in
advanced hematologic malignancies, including acute leukemia
with MLL rearrangements using a related compound called
EPZ-5676 [21]. The trial started recruitment in September
2012, and as of now, no results are publicly available. Data
on preclinical characteristics including rat and dog pharmaco-
kinetics and efficacy data in a nude rat xenograft leukemia
model have been presented at the Annual Meeting of the
American Society of Hematology 2012 [22].

At present, there are no published data available that
support anti-proliferative activity of DOT1L inhibitors in
non-leukemic cancers not harboring a MLL-rearrangement
or alternative genetic aberrations leading to activation of
DOT1L. This needs to be kept in mind when considering
that the majority of ‘cell proliferative disorders’ addressed in
the application refer to solid tumors and neurological disorders.

4. Expert opinion

It is becoming more and more evident that the deregulation of
chromatin modifiers plays a critical role in tumorigenesis [23].
Therefore, it is not surprising that this field attracts increasing
attention of academic and pharmaceutical research to investi-
gate potential exploitation as drug targets and/or bio-
markers [23,24]. A competitor analysis of published documents
by SciFinder [25] revealed that HMTs as drug targets seem to
represent yet a middlingly competitive field [when compared
to the histone deacetylase (HDAC) field], which is so far
mainly investigated by academia with at least 142 published
documents versus 14 from industry. The numbers of publica-
tions are constantly rising over the past six years. A patent
search in the WIPO (World Intellectual Property Organiza-
tion) database, Patentscope [26] revealed that OncoTherapy
Science, Inc. (OTS, Kawasaki-shi Kanagawa, Japan) and
Sangamo BioSciences, Inc. (Richmond, CA, USA) are the
most active applicants in this field with 50, respectively, 38 patent
applications.

As yet, the number of pharmaceutical agents targeting
chromatin modifiers is still small. The first to-market drug
was a pan HDAC inhibitor from Merck, suberoylanilide
hydroxamic acid (SAHA, vorinostat), which is FDA approved
for cutaneous T cell lymphoma and is now in several Phase III
trials for wider approval [2]. Currently, only one additional
chromatin modifier is approved for clinical use: romidepsin
from Celgene, which is a class I histone deacetylase inhibitor
used for the treatment of CTCL [2], but there are more than
13 other HDAC inhibitors in the clinical pipeline, highlighting
the potential of epigenetic drugs [2].

Epizyme has recently formed strategic partnerships with
GlaxoSmithKline [27] and Celgene (Summit, NJ, USA) [28]

to systematically discover, develop and commercialize HMT
inhibitors. In addition, ‘Transcription and Chromatin Modu-
lation’ is currently a major focus area of Bayer HealthCare for
new drug development in oncology [29]. Overall, the potential
of drugs targeting commonly affected chromatin modifiers is
expected to be very high, and exponentially growing invest-
ments into this market are anticipated. Products targeting
chromatin modifiers are potentially applicable to different
tumor entities such as high-grade gliomas [30], aromatase-
inhibitor resistant breast cancer [31] or other solid tumors [32],
clearly illustrating their enormous market potential for
commercialization (billions of Euros).

Compared to the HDAC inhibitor field, the development
of HMT inhibitors is still emerging. So far only one com-
pound targeting HMTs, the above mentioned EPZ-5676,
has entered clinical trials [21]. However, growing evidence
indicates several HMTs as promising drug targets in numer-
ous cancer types. Since multiple companies are now develop-
ing such inhibitors, targeting HMTs will be a promising new
frontier for anticancer drug discovery.

MLL/AF4 rearrangements that lead to ‘activation’ of DOT1L
are present in about 5% of all ALL patients and are associated
with poor prognosis (median overall survival < 12 months) [33].
In the USA, approximately 2500--3500 new cases of ALL are
diagnosed in children/year, with high incidence of MLL rear-
rangements in 70% of infant ALL patients. In case that use of
DOT1L inhibitors is only beneficial for leukemias with MLL
rearrangements, their market potential might be limited, but in
terms of ‘years of life gained’, the clinical value is expected to
be very high.

Declaration of interest

The authors state no conflict of interest and have received no
payment in preparation of this manuscript.

Table 1. Summary of DOT1L inhibitory activity.

Potency category No of compounds tested

IC50 < 0.1 µM 107
0.1 µM < IC50 < 1.0 µM 16
1.0 µM < IC50 < 10 µM 8
IC50 > 10 µM 2
Total 133
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