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Abstract The term “epigenetics” refers to modifications in gene expression caused

by heritable, but potentially reversible, changes in DNA methylation and chromatin

structure. Epigenetic alterations have been identified as promising new targets for

cancer prevention strategies as they occur early during carcinogenesis and represent

potentially initiating events for cancer development. Over the past few years, nutri-

epigenetics – the influence of dietary components on mechanisms influencing the

epigenome – has emerged as an exciting new field in current epigenetic research.

During carcinogenesis, major cellular functions and pathways, including drug

metabolism, cell cycle regulation, potential to repair DNA damage or to induce

apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control

and differentiation become deregulated. Recent evidence now indicates that epige-

netic alterations contribute to these cellular defects, for example epigenetic silenc-

ing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators,

apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers

and transcription factors by promoter methylation, and modifications of histones

and non-histone proteins such as p53, NF-kB, and the chaperone HSP90 by

acetylation or methylation.

The present review will summarize the potential of natural chemopreventive

agents to counteract these cancer-related epigenetic alterations by influencing the

activity or expression of DNA methyltransferases and histone modifying enzymes.

Chemopreventive agents that target the epigenome include micronutrients (folate,

retinoic acid, and selenium compounds), butyrate, polyphenols from green tea,

apples, coffee, black raspberries, and other dietary sources, genistein and soy

isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid

(NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and

cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM),
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sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate

(PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol,

and relatively unexplored modulators of histone lysine methylation (chaetocin,

polyamine analogs). So far, data are still mainly derived from in vitro investigations,

and results of animal models or human intervention studies are limited that demon-

strate the functional relevance of epigenetic mechanisms for health promoting or

cancer preventive efficacy of natural products. Also, most studies have focused on

single candidate genes or mechanisms. With the emergence of novel technologies

such as next-generation sequencing, future research has the potential to explore

nutri-epigenomics at a genome-wide level to understand better the importance of

epigenetic mechanisms for gene regulation in cancer chemoprevention.
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1 Introduction

The term “epigenetics” refers to modifications in gene expression caused by

heritable, but potentially reversible, changes in DNA methylation and chromatin

structure [1]. Given the fact that epigenetic modifications are reversible and occur

early during carcinogenesis as potentially initiating events for cancer development,

they have been identified as promising new targets for cancer prevention strategies.

Major epigenetic mechanisms of gene regulation include DNA methylation,

modifications of the chromatin structure by histone tail acetylation and methylation,

and small non-coding microRNAs, that affect gene expression by targeted degra-

dation of mRNAs or inhibition of their translation (overview in Fig. 1) [3, 4].
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Epigenetic mechanisms are essential to control normal cellular functions and

they play an important role during development. Distinct patterns of DNA methyl-

ation regulate tissue specific gene expression and are involved in X-chromosome

inactivation and genomic imprinting [5–7]. Histone modifications are critical for

memory formation [4, 8]. Interestingly, epigenetic profiles can be modified to adapt

to changes in the environment (e.g., nutrition, chemical exposure, smoking, radia-

tion, etc.) [3, 9] as has been exemplified in studies with monozygotic twins and

inbred animals [10, 11]. Consequently, alterations in DNA methylation and histone

marks eventually contribute to the development of age-related and lifestyle-related

diseases, such as metabolic syndrome, Alzheimer’s disease, and cancer [8, 12, 13].

2 DNA Methylation

DNA methylation is mediated by DNA methyltransferases (DNMT) that transfer

methyl groups from S-adenosyl-L-methionine (SAM) to the 50-position of cytosines.

This reaction mainly takes place at cytosines when positioned next to a guanine (CpG

dinucleotides) and creates 5-methylcytosine (5mC) and S-adenosyl-L-homocysteine

(SAH). Three active mammalian DNMTs have been identified so far, i.e., DNMT1,
3a, and 3b. DNMT1 is a maintenance methyltransferase that maintains DNA methyl-

ation during DNA replication. It preferentially methylates the newly synthesized,

Fig. 1 Overview of epigenetic mechanisms including DNA methylation, histone tail

modifications and non-coding (micro) RNAs, targeting DNA, N-terminal histone tails and

mRNA (modified from [2], with permission of Nature Publishing Group)
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unmethylated DNA strand after replication and thus assures transmission of DNA

methylation patterns to daughter cells. DNMT3a and DNMT3b are “de novo”

methyltransferases that catalyze methylation of previously unmethylated sequences.

DNMT3b is believed to play an important role during tumorigenesis [14, 15].

In normal cells, CpG-rich sequences (so-called CpG islands, CGIs) in gene

promoter regions are generally unmethylated, with the exception of about 6–8%

CGIs methylated in a tissue-specific manner [7]. Conversely, the majority of

CpG sites in repetitive sequences such as ribosomal DNA repeats, satellite repeats,

or centromeric repeats are often heavily methylated, thereby contributing to

chromosomal stability by limiting accessibility to the transcription machinery

[16]. This controlled pattern of DNA methylation is disrupted during ageing,

carcinogenesis, or development of chronic diseases. Increased methylation (DNA

hypermethylation) of promoter CGIs leads to transcriptional silencing of tumor

suppressors and other genes with important biological functions [12, 16, 17]. In

contrast, global loss of DNA methylation at repetitive genomic sequences (DNA

hypomethylation) during carcinogenesis has been associated with genomic insta-

bility and chromosomal aberrations and was first described about 30 years ago [18,

19] (Fig. 2). Different from irreversible gene inactivation by genetic deletions or

nonsense mutations, genes silenced by epigenetic modifications are still intact and

can potentially be reactivated by small molecules acting as modifiers of epigenetic

Fig. 2 Overview of DNAmethylation changes during carcinogenesis and cancer chemopreventive

agents inhibiting the activity of expression of DNMTs, thereby preventing aberrant (promoter)

hypermethylation or genome wide hypomethylation. DNA methylation is catalyzed by DNA

methyltransferases (DNMTs) using S-adenosylmethionine (SAM) as a substrate. See text and

Table 1 (Appendix) for further details. Asterisks indicate epigenetic activity in vivo. Empty circles:

unmethylated CpG dinucleotide; red circles: methylated CpG site
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mechanisms. Consequently, development of agents or food components that pre-

vent or reverse methylation-induced inactivation of gene expression is a new

promising approach for cancer prevention [20].

3 Histone Modifications

Epigenetic regulation of gene expression is also mediated by post-translational

modifications at the N-terminal tails of histones. These include acetylation, meth-

ylation, phosphorylation, ubiquitinylation, sumoylation, and ADP ribosylation and

contribute to genomic stability, DNA damage response, and cell cycle checkpoint

integrity [118–120]. Histones can be modified through sequence-specific transcrip-

tion factors or on a more global scale through histone-modifying enzymes [120]. So

far, histone acetylation and histone methylation have been investigated the most

and disturbance of their balance has been associated with neoplastic transformation

(Fig. 3).

Histone acetylation is maintained by the interplay of histone acetyltransferases
(HATs) and histone deacetylases (HDACs). HATs transfer acetyl groups from

acetyl-CoA to the e-amino group of lysine (K) residues in histone tails, whereas

HDACs remove histone acetyl groups by catalyzing their transfer to Coenzyme A

(CoA). Acetylation of histone tails opens up the chromatin structure, allowing

transcription factors to access the DNA. Consequently, proteins with HAT catalytic

Fig. 3 Simplified overview of histone modifying enzymes with a focus on histone deacetylases

(HDACs), histone acetyltransferases (HATs), histone methyl transferases (HTMs), and histone

demethylases (HDM), and their influence on chromatin structure. Sirtuins represent a NAD+-

dependent subclass of HDACs (class III). Also indicated is the inhibitory potential of

chemopreventive agents. See text and Tables 2 and 3 (Appendix) for further details. Asterisks
indicate epigenetic activity in vivo
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activity are often transcriptional coactivators. So far at least 25 HAT proteins have

been characterized. They are organized into four families based on structure

homology [189] and often possess distinct histone specificity. Subgroups include

the GNAT (hGCN5, PCAF), MYST (MYST, Tip60), p300/CBP (p300/CBP), SRC
(SRC-1), and TAFII250 families (TAFII250) [119, 190]. In contrast to histone

acetylation, histone deacetylation generally leads to chromatin condensation and

transcriptional repression. So far, 18 proteins with HDAC activity have been

classified [191, 192]. HDACs 1–11 are subdivided into three classes – I, II, and

IV – based on homology, size, sub-cellular expression, and number of enzymatic

domains. Class III is comprised of sirtuins 1–7, which are structurally unrelated to

class I and II HDACs and require NAD+ as a cofactor for activity [191, 192].

Interestingly, HDAC substrates are not limited to histones. As further outlined

below, several important regulatory proteins and transcription factors such as

p53, E2F, and nuclear factor-kB (NF-kB) involved in stress response, inflamma-

tion, and apoptosis have been shown to be regulated by acetylation [193–195].

Histone methylation takes place at lysine and arginine residues. Histone lysine

methylation has activating or repressive effects on gene expression. This is depen-

dent on the lysine residue that is methylated (e.g., K4, K9, K27, K36, K79 in H3),

the methylation status (mono-, di-, or tri-methylation), and the location (interaction

with promoter vs gene coding regions) [118, 119, 196]. Methylation at H3K4,

H3K36, and H3K79 is generally associated with transcriptional active chromatin

(euchromatin), whereas methylation at H3K9, H3K27, and H4K20 is frequently

associated with transcriptional inactive heterochromatin [190, 197]. Histone lysine

methylation is mediated by histone lysine methyltransferases (HMTs) that transfer a
methyl group from SAM to the lysine residue. HMTs can be classified as Dot1
protein family and proteins containing a so-called SET domain, based on sequence

similarity with Drosophila proteins suppressor of variegation (SUV), enhancer of
zeste (EZH), and homeobox gene regulator Trithorax (TRX). So far, more than 50

SET domain family members have been identified in humans [197]. They are

grouped into six subfamilies, SET1, SET2, SUV39, EZH, SMYD, and PRDM,

and several SET-containing HMTs that do not fall into these groups [197].

Several types of histone lysine demethylases (HDMs) have been identified so far,

for example lysine specific demethylase 1 (LSD1) and the family of about 20

Jumonji domain-containing (JmjC) histone demethylases [118, 119, 197]. Similar

to lysine acetylation, lysine methylation is not limited to histone proteins, and

several non-histone protein substrates including p53, retinoblastoma protein (RB),
the NF-kB subunit RelA, and estrogen receptor a (ERa) have been identified

(summarized in [198–200]).

4 MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNAs of 20–22 nucleotides that

inhibit gene expression at the posttranscriptional level. MiRNAs are involved in

the regulation of key biological processes, including development, differentiation,
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apoptosis, and proliferation, and are known to be altered in a variety of chronic

degenerative diseases including cancer [201]. MiRNAs are generated from

RNA precursor structures by a protein complex system composed of members

of the Argonaute protein family, polymerase II-dependent transcription, and

the ribonucleases Drosha and Dicer [202]. MiRNAs regulate the transforma-

tion of mRNA into proteins, either by imperfect base-pairing to the mRNA

30-untranslated regions to repress protein synthesis, or by affecting mRNA

stability. Each miRNA is expected to control several hundred genes. They

have been implicated in cancer initiation and progression, and their expression

is often down-regulated during carcinogenesis. Major mechanisms of miRNA

deregulation include genetic and epigenetic alterations as well as defects in the

miRNA processing machinery [196].

5 Interplay Between Chemopreventive and Epigenetic

Mechanisms and Natural Products Effects

Over the last few years, evidence has accumulated that natural products and dietary

constituents with chemopreventive potential have an impact on DNA methylation

(Fig. 2), histone modifications (Fig. 3), and miRNA expression. The available

information on the topic has been summarized in several recent review articles

[20–36, 121, 122, 203, 204].

As indicated in Fig. 2, folate and B-vitamins have a potential impact on DNA

hypomethylation. They affect the so called “one-carbon metabolism” which

provides methyl groups for methylation reactions. Folate is an important factor

for the maintenance of DNA biosynthesis and DNA repair, and folate deficiency

leads to global DNA hypomethylation, genomic instability, and chromosomal

damage. As an essential micronutrient, folate needs to be taken up from dietary

sources, such as citrus fruits, dark green vegetables, whole grains, and dried beans.

Alcohol misuse is often associated with folate deficiency. Epidemiological studies

have indicated that low folate levels are associated with an increased risk for

colorectum, breast, ovary, pancreas, brain, lung, and cervix cancer [66, 76, 205].

Consequently, the relationship between folate status, DNA methylation, and cancer

risk has been analyzed in numerous rodent carcinogenesis models and in human

intervention studies. Overall, the results are inconclusive and depend on various

parameters, for example dose and timing of the intervention, the severity of folate

deficiency, and health status (reviewed in [23, 66–68, 76]). Excessive intake of

synthetic folic acid (from high-dose supplements or fortified foods) may even

increase human cancer risk by accelerating growth of precancerous lesions [66].

Therefore folate supplementation cannot be generally recommended, and

deficiencies should be prevented by dietary intake. In a cohort-based observation

study with 1,100 participants, Stidley et al. investigated the effect of various dietary

factors on promoter methylation levels of eight genes commonly hypermethylated
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in cancer, including RassF1A, p16, MGMT, DAPK, GATA4, GATA5, PAX5a,
and PAX5b in exfoliated aerodigestive tract cells from sputum samples of current

and former smokers. Significant protection from DNA methylation (less than two

genes methylated) was observed for regular consumption of folate [OR (odds

ratio) ¼ 0.84 per 750 mg/day; CI (95% confidence interval), 0.72–0.99], leafy

green vegetables (OR, 0.83 per 12 monthly servings; CI, 0.74–0.93), and multivita-

min use (OR, 0.57; CI, 0.40–0.83) [77].

The following chapter will focus on pathways which are relevant for chemopre-

vention and are commonly deregulated by epigenetic mechanisms in cancer cells,

including drug detoxification, cell cycle regulation, apoptosis induction, DNA

repair, tumor-associated inflammation, cell signaling that promotes cell growth,

and cell differentiation (overview in Fig. 4). It will present a summary of natural

chemopreventive agents targeting these pathways by affecting DNA methylation

and histone tail modifications. Their effect on miRNAs and subsequent gene

expression will not be discussed.

Plant compounds which affect DNA methylation and inhibit DNMT enzymatic

activity (DNMT inhibitors, DNMTi), revert aberrant DNA promoter methylation,

or reactivate genes silenced by promoter hypermethylation, are listed in Table 1

(Appendix). Natural products with influence on histone acetylation and methylation

that inhibit the activity or modulate the expression of histone-modifying enzymes

including HDACs, SIRTs, HATs, and HMTs are summarized in Tables 2 and 3

(Appendix).

6 Detoxification

GSTP1 is a member of the glutathione S-transferase family of isoenzymes that

conjugate reactive chemicals and carcinogens with the tripeptide glutathione (GSH)

and thus enhance their excretion and detoxification [206]. Induction of GSTs and

other enzymes involved in phase 2 of drug metabolism via the Nrf2-Keap1 pathway
is an important mechanism in cancer chemoprevention [207]. Recently, GSTP1
activity has also been associated with cell-signaling functions critical for survival,

for example the regulation of c-Jun N-terminal kinase (JNK) activity and modula-

tion of protein functions by S-glutathionylation [208].

Loss of GSTP1 expression by CGI hypermethylation is very common in prostate

cancer [209]. GSTP1 is expressed and unmethylated in normal prostate tissue.

Hypermethylation increases with increasing prostate carcinogenesis and can be

detected in up to 70–100% prostate adenocarcinoma [209]. GSTP1
hypermethylation is also detectable in plasma, ejaculate, or urine, and is discussed

as a promising prostate cancer biomarker. In addition to prostate cancer, GSTP1
hypermethylation is frequent in ~30% and >80% of breast cancer and hepatocellu-

lar carcinoma, respectively [209]. Deletion of GSTP1 in mice was shown to

enhance susceptibility to chemically-induced skin and lung cancer, and to increase

adenoma incidence and multiplicity when mGstp1/p2 knockout mice were crossed
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with APCMin/+ mice [206]. Gene expression studies in these models indicate a

protective role of GSTP1 in inflammation and immune response.

Reexpression of GSTP1 after treatment with natural products has been tested in

prostate and breast cancer cell lines. Ramachandran et al. was unable to detect

demethylation and reexpression of GSTP1 in LNCaP and PC-3 prostate cancer

cells after treatment with seleno-DL-methionine. More recently, reactivation of

GSTP1 by sodium selenite in LNCaP cells was shown to involve a dual effect on

both DNA methylation and histone modifications. Incubation with low dose sodium

selenite lowered DNMT1 mRNA and protein expression, reduced global DNA

methylation, and led to the reexpression of GSTP1 associated with reduced GSTP1
promoter methylation [115]. An earlier study identified sodium selenite and organic

seleno-compounds as inhibitors of DNMT activity in vitro [112]. Therefore, direct

inhibition of DNMT enzyme activity might contribute to the demethylating potential

of sodium selenite. Phenethylisothiocyanate (PEITC) derived from the glucosinolate

gluconasturtiin from watercress was able to revert epigenetic silencing of GSTP1 in

LNCaP cells. Reduced DNA methylation at specific CpG sites was associated with

enhanced protein expression and increased GSTP1 enzymatic activity [100]. Green
tea polyphenols (GTP) and epigallocatechin gallate (EGCG) inhibited DNMT

enzyme activity and DNMT protein expression in LNCaP cells. DNMT inhibition

was associated with reduced methylation of the GSTP1 proximal promoter and

reactivation ofGSTP1 expression. Transcription was facilitated by enhanced binding
of transcription factor Sp1 to the GSTP1 promoter [45]. Intervention of prostate

cancer cell lines with the soy phytoestrogens genistein and daidzein significantly

reducedGSTP1 promoter methylation and resulted in reexpression ofGSTP1 protein,
determined by immunocytochemistry and western blotting [83, 84]. The mechanism

of inhibition was not further analyzed. King-Batoon et al. investigated the effects of

genistein and the tomato-derived carotenoid lycopene on DNA methylation in breast

cancer cells. A single application of lycopene reactivated GSTP1 mRNA expression

within 1 week, associated with reduced promoter methylation inMDA-MB-468 cells,

whereas genistein was weakly effective only after repetitive treatments. Both

compounds were ineffective in the MCF7 cell line, and also did not reduced RARb
and HIN1 promoter methylation in both cancer cell lines [79]. Similarly, treatment of

MCF7 cells with a series of dietary polyphenols, including ellagic acid,
protocatechuic acid, sinapic acid, syringic acid, rosmarinic acid, betanin, and

phloretin did not lead to demethylation and reexpression of GSTP1, RASSF1A, and
HIN1, although all of these compounds at the same concentrations inhibited DNMT

activity in vitro by 20–88% [40]. Lack of demethylating activity in cell culture might

indicate an unspecific enzyme inhibitory effect.

As mentioned above, transcription factor Nrf2 (nuclear factor-erythroid 2 p45-

related factor 2) plays an important role in phase 2 enzyme induction [207].

Recently, Nrf2 was shown to be epigenetically silenced by promoter methylation

at specific CpG sites during prostate carcinogenesis in tumors of transgenic adeno-

carcinoma of mouse prostate (TRAMP) mice and tumorigenic TRAMP C1 cells. In

contrast, the Nrf2 promoter CGI was unmethylated in normal prostate tissue and

non-tumorigenic TRAMP C3 cells. Methylation led to transcriptional repression by
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increased binding of methyl binding protein 2 (MBD2) and H3K9me3, and reduced

interaction with RNA polymerase II and the activating histone mark acetylated

histone 3 (ac-H3) [210]. Treatment of TRAMP C1 cells with curcumin significantly
reduced Nrf2 promoter methylation at five specific CpG sites and led to mRNA

reexpression of Nrf2 and NAD(P)H:quinone reductase (NQO1) as a downstream

target [49]. Curcumin (diferuloyl methane) is a well characterized cancer

chemopreventive agent derived from turmeric (Curcuma longa) [211].

7 Cell Cycle Regulation

One of the hallmarks of cancer cells is their ability to evade growth-suppressing

signals. Various genes affecting cell cycle progression have been identified as

tumor suppressor genes, first of all p53 and pRB [212]. Progression through the

cell cycle is regulated through activation and inactivation of cyclin-dependent

kinase (Cdks) that form sequential complexes with cyclins A–E during the different

phases G1, S, G2, and M of the cell cycle. During G1 phase, Cdk2–cyclin E and

Cdk4/6–cyclin D1 complexes promote entry into S-phase by phosphorylation of

pRB, thereby releasing the transcription factor E2F [213]. The activity of Cdks is

controlled by binding of Cdk inhibitors (CKIs) to Cdk–cyclin complexes. CKIs

p21, p27, and p57 preferentially interact with Cdk2– and Cdk4–cyclin complexes,

whereas CKIs p15INK4B and p16INK4A are more specific for Cdk4– and Cdk6–cyclin

complexes and block their interaction with cyclin D [213].

Interestingly, both DNA methylation and histone acetylation are involved in the

regulation of CKI expression, as exemplified with p16INK4A and p21CIP1/WAF1.

p16INK4A (inhibitor of Cdk4, also known as CDKN2, CDK inhibitor 2) is genetically

inactivated by point mutations, deletion, or DNA methylation in about 50% of all

human cancers [214]. Hypermethylation of the p16 promoter is frequently observed

in all major human malignancies, including hepatocellular carcinoma, primary

gastric carcinoma, Barrett’s esophagus and esophageal adenocarcinoma [214],

breast cancer [215], squamous cell carcinoma of the lung [216], colorectal cancer

[217], lymphoma [218], as well as tumors of the ovary, uterus, head and neck, brain,

kidney, bladder, and pancreas [219]. Murine p16 knockout strains are more prone to

spontaneous tumorigenesis than wildtype littermates, whereas overexpression of

p16 led to a threefold reduction of spontaneous cancers [220].

Several studies have investigated whether natural products were able to demeth-

ylate and reactivate p16 in a wide variety of cancer cell lines. Fang et al. reported

demethylation and re-expression of p16 in KYSE510 esophageal cancer cells and

HCT116 colon cancer cells after treatment with EGCG [37, 55]. These results could

not be confirmed in a subsequent study by Chuang et al. [56] using T24 bladder

cancer cells, HT 29 colon cancer cells, and PC3 prostate cancer cells. In A431

epidermoid carcinoma cells, EGCG decreased global methylation and inhibited

DNMT activity as well as expression of DNMT1, 3a, and 3b, which led to the

reexpression of p16 mRNA and protein [61]. Genistein treatment of KYSE510
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esophageal cancer cells resulted in dose-dependent and time-dependent demethyl-

ation and re-expression of p16 [78]. In a study by Fini et al., intervention of RKO,

SW48, and SW480 colon cancer cells with an apple polyphenol extract also

resulted in p16 promoter demethylation and mRNA or protein reexpression. This

was explained by downregulation of DNMT 1 and DNMT 3b protein expression in

RKO and SW480 cells [38]. Nordihydroguaiaretic acid (NDGA) was investigated
in RKO and T47D breast cancer cell lines. p16 promoter demethylation and

reactivation was associated with reduced cyclin D1 expression and RB phosphory-

lation, G1 cell cycle arrest, and increased senescence [96]. Phenylhexyl isothiocya-
nate (PHI) was initially identified as an HDAC inhibitor, as described below. Lu

et al. were able to demonstrate that intervention in RPMI8226 myeloma cells

reduced p16 promoter methylation and induced cell cycle arrest in G1 phase [102].

p21, also known as CDK-interacting protein 1 (Cip1) or wild-type p53-activated
fragment 1 (WAF1), is encoded by the cyclin-dependent kinase inhibitor 1

CDKN1A gene locus [221–223]. p21 directly inhibits the activity of Cdk2/cyclin

E and functions as an adaptor protein for Cdk4/6/cyclin D complexes, thereby

modulating cell cycle progression at S-phase [224]. Overexpression of p21 can lead
to G1-phase, G2-phase, or S-phase arrest, whereas p21-deficient cells fail to undergo
cell cycle arrest in response to p53 activation after DNA damage [225]. In addition

to cell cycle regulation, p21 is involved in regulation of cell differentiation,

senescence, gene transcription, apoptosis, and DNA repair (review in [223]). p21
knockout mice are prone to development of spontaneous tumors [223]. In contrast

to p16 or p53, mutations in p21 are extremely rare (summarized in [225]). In

comparison to other tumor suppressor genes, methylation at the p21 promoter

was not frequently observed in hematological malignancies [226]. p21 was

overexpressed after downregulation of DNMTs, but the mechanism of induction

might be independent of changes in promoter methylation and rather involve

competing interactions of DNMTs and p21 with PCNA and enhanced stability

[224, 227]. p21 expression is more commonly regulated at the transcriptional

level, and chromatin structure controlled by histone acetylation seems to play an

important role. The p21 promoter region contains binding sites for p53 and Sp1/3,

several E-boxes, and can be repressed by the oncogene c-Myc [224]. Inhibition of

HDAC activity, in addition to opening the chromatin structure, has been suggested

to lead to a release ofHDAC1 from the p21 promoter, thereby facilitating binding of

Sp1/3 and HATs p300 or PCAF. Indirectly, hyperacetylation of p53 through HDAC
inhibition may promote p21 transcription by enhancing the affinity of p53 to the

p21 promoter (summarized in [224]). Alternatively, p21 expression can be tran-

scriptionally silenced through recruitment of CTIP2 (COUP-TF-interacting protein
2) and interactions with HDACs and histone methyltransferases (HMTs) [180].

Butyric acid (its sodium salt being referred to as “butyrate”) is a major short-

chain fatty acid produced by colonic fermentation of resistant starch and dietary

fiber. Butyrate was first described to inhibit HDAC activity in vitro and in cell

culture models more than 30 years ago. Initial work focused on its anti-proliferative

and differentiation-inducing effects in leukemia cell lines [228–230]. Since dietary

fiber consumption has been associated with colon cancer prevention [231], Archer
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et al. established a link between butyrate-mediated HDAC inhibition, p21 induc-

tion, and cell growth inhibition in colon cancer cell lines [130]. Induction of p21
mRNA and protein expression was also associated with histone hyperacetylation

and colon cancer prevention in 1,2-dimethylhydrazine-induced tumorigenesis in a

mouse model of colorectal cancer [133].

Dietary sources of selenium, such as Se-methyl-Se-cysteine (SMC) and

Se-methionine (SM), can be metabolized to a-methylselenopyruvate (MSP) and

a-keto-g-methylselenobutyrate (KMSB) with structural similarity to butyrate [156].

Consequently Nian et al. investigate HDAC-inhibitory potential of these a-keto
acid metabolites. MSP and KMSB caused a dose-dependent inhibition of human

HDAC1 and HDAC8 activities in vitro. Enzymatic kinetic studies and computa-

tional molecular modeling identified MSP as a competitive inhibitor of HDAC8,
based on reversible interaction with the active site zinc atom. In human colon

cancer cells, MSP and KMSB dose-dependently inhibited HDAC activity and

increased global H3 acetylation and p21 expression levels, which led to G2/M

cell cycle arrest and apoptosis induction [156]. In a seminal study published in

2004, Myzak et al. first suggested that sulforaphane (SFN) might possess HDAC-
inhibitory activity, based on the observation that SFN treatment caused p21
upregulation and cell cycle arrest, similar to the activities of butyrate. SFN failed

to inhibit directly HDAC activity in cell-free systems in vitro. Rather, in silico

modeling indicated that SFN-Cys, an SFN metabolite, might possess HDAC inhib-

itory potential. Consistently, cell culture media after incubation with SFN contained

a metabolite able to inhibit HDAC enzymatic activity [169]. Further studies con-

firmed the HDAC inhibitory activity of SFN intervention in various human cancer

cell lines [169, 170, 174]. In human prostate cancer cells, SFN treatment increased

global histone acetylation, accompanied by locus-specific hyperacetylation of H3,

H4, or both at the p21 promoter [170]. A study of SFN intervention in APCMin/+

mice underlined the relevance of HDAC inhibition for chemopreventive activity of

SFN. A single dose of SFN lowered HDAC activity and transiently increased ac-H3

and ac-H4 levels in colonic mucosa of wild-type mice [176]. Long-term application

for 10 weeks produced similar effects in ileum, colon, prostate, and peripheral

blood mononuclear cells (PBMC). In APCMin/+mice, SFN treatment reduced tumor

multiplicity, increased ac-H3 levels, and ac-H3 occupancy at the p21 and Bax
promoter in tumor samples, and induced expression of pro-apoptotic Bax [176].

Bax is a member of the Bcl-2 protein family of apoptosis regulators which play an

important role in mediating the intrinsic, mitochondrial pathway of apoptosis

induction [232, 233]. SFN reduced growth of androgen-independent human pros-

tate cancer cells in a xenograft model, and increased global histone acetylation in

prostate tissue and in xenografts [177]. In a human pilot study, three healthy

volunteers ingested 68 g of broccoli sprouts as a source of SFN. After 3 h and 6 h

the intervention transiently induced strong hyperacetylation of H3 and H4 in

PBMCs, concomitant with HDAC inhibition. Both acetylation and enzyme activity

returned to normal levels by 24 and 48 h [178]. These findings support a role for

SFN as an HDAC inhibitor in vivo, with evidence for decreased HDAC activity in

various tissues, increased global histone acetylation, as well as enhanced
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localization of acetylated histones at specific promoters. These findings may also be

relevant for human cancer prevention.

Two additional isothiocyanates (ITCs), PEITC found in water cress [234, 235],

as well as the synthetic PHI were also confirmed as inhibitors of HDACs,

suggesting that this might be a more common mechanism of ITCs. Exposure of

prostate cancer cells to PEITC significantly enhanced histone acetylation, cell cycle

arrest, and p53-independent up-regulation of CKIs, including p21 and p27 [158].

Similar to SFN and PEITC, PHI was first identified as an HDAC inhibitor and

inducer of cell cycle arrest, but was also shown to reduce p16 promoter methylation

in myeloma cells [102]. HDAC inhibitory potential and chromatin modifications

were confirmed in human prostate and liver cancer, and leukemia and myeloma

cells. PHI affected both the expression as well as the activity of HDAC1 in LNCaP

and HL-60 cells [159, 160]. In leukemia cells, PHI treatment increased expression

of the HAT p300/CBP [161]. Increased levels of ac-H3 and ac-H4 were commonly

detected in all cell lines, as well as in bone marrow of AML patients [163]. This was

further associated with increased interaction of acetylated histones with the p21
promoter, p21 induction, G0/G1 cell cycle arrest, and apoptosis induction

[160–162].

In addition to sulfur-containing ITCs, dietary organosulfur compounds found in

garlic and other Allium species such as diallyldisulfide (DADS) have been shown to
inhibit HDAC activity. After consumption, DADS is converted to the active metab-

olite S-allylmercaptocysteine (SAMC). Both compounds are further metabolized to

allyl mercaptan (AM) and other metabolites (reviewed in [121]). Induction of

histone acetylation by DADS and SAMC was first described in murine

erythroleukemia cells [236]. Interestingly, when testing HDAC inhibitory potential

in vitro, AM was more potent than the precursor compounds DADS and SAMC.

Nian et al. predicted direct binding of AM to the HDAC active site by in silico

docking studies and confirmed inhibitory potential in vitro and in cell culture.

HDAC inhibition by AM led to hyperacetylation of H3 and H4, enhanced ac-H3

association with the p21 promoter, upregulation of p21, and cell cycle arrest [123].

DADS treatment induced transient histone hyperacetylation followed by p21 induc-
tion, cell-cycle arrest, and induction of differentiation and apoptosis in various

cancer cell lines (reviewed in [141]). Intracecal perfusion or intraperitoneal injec-

tion of DADS (200 mg/kg b.w.) to male rats also resulted in histone hyperace-

tylation in normal hepatocytes and colonocytes [142]. These data indicate that

effects on histone acetylation and downstream mechanisms induced by

organosulfur compounds may be relevant for preventive efficacy, although the

described effects observed both in vitro as well as in vivo require doses that

might not be reached by dietary consumption of Allium vegetables. Also, inhibition

of HDAC activity and histone hyperacetylation are transient effects. This may

suggest that the compounds or dietary sources have to be consumed regularly to

achieve long-term effects in vivo. Apicidin, a fungal metabolite, is a cyclic

tetrapeptide antibiotic with broad spectrum antiparasitic, antiprotozoal, and poten-

tial antimalarial properties [127]. Apicidin treatment at lowmicrogram per milliliter

concentrations inhibited cell proliferation in a series of cancer cell lines. Apicidin
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induced morphological changes, accumulation of ac-H4, and G1 cell cycle arrest in

human cervical cancer cells. This led to induction of p21 and gelsolin involved in

cell cycle control and cell morphology, respectively. Decreased phosphorylation of

Rb protein was indicative of Cdk inhibition. Interestingly, in contrast to the dietary

HDAC inhibitors described above, the effects of apicidin on cell morphology,

expression of gelsolin, and HDAC1 activity appeared to be irreversible [127]. So

far, apicidin has not been tested in animal models for chemopreventive activity.

In addition to these direct effects on HDAC activity, several chemopreventive

agents, including the soy isoflavone genistein, 3,30-diindolylmethane (DIM) derived

from cruciferous vegetables, parthenolide, a sesquiterpene lactone from feverfew,

the fungal metabolite chaetocin, and EGCG have been described to modulate

histone acetylation by changing the expression of histone modifying enzymes.

In prostate cancer cell lines, genistein treatment caused an upregulation of

histone acetyl transferases (HATs) CREB-binding protein (CREBBP), p300,
PCAF, and HAT1. This resulted in hyperacetylation of histones H3 and H4,

increased association of acetylated H3K4 with the transcription start sites of p16
and p21, re-expression of p16 and p21, and cell cycle arrest [153]. Indole-3-carbinol
(IC3) is the main hydrolysis product of the glucosinolate glucobrassicin [234].

Under low gastric pH conditions I3C is condensed to polycyclic compounds such

as DIM as the major condensation product [237]. In a study by Li et al., DIM

selectively induced proteasomal degradation of the class I histone deacetylases

HDAC1, 2, 3, and 8 in human colon cancer cells in vitro and in tumor xenografts,

without affecting class II HDACs. HDAC depletion resulted in re-expression of p21
and p27 and triggered cell cycle arrest in G2/M phase. Additionally, HDAC deple-

tion was associated with DNA damage and apoptosis induction [144]. Parthenolide
was described as an HDACi-like compound with ability to induce transient and

selective ubiquitination and proteasomal degradation of HDAC1 in breast cancer

and other cancer cell lines, whereas other classes I and II HDACs were not affected.

Downstream effects were similar to those of HDACi, with p53-independent
upregulation of p21 and global histone hyperacetylation. Downregulation of

HDAC1 involved the phosphoinositide-3-kinase-like kinase ATM (ataxia telangiec-

tasia), as siRNA-mediated knockdown of ATM severely affected parthenolide-

induced degradation of HDAC1. However, the exact mechanism how parthenolide

induces HDAC1 degradation via ATM is presently unknown [157].

In addition to increased histone acetylation through various mechanisms, inhi-

bition of repressive histone methylation marks also results in upregulation of p21.
Chaetocin, a fungal metabolite, was one of the first identified selective inhibitors for

the SUV39 class of HMTs targeting H3K9 (overview in [238]). H3K9

trimethylation is generally associated with repressed chromatin. Chaetocin treat-

ment of microglial cells transfected with a p21-promoter reporter construct

repressed H3K9 trimethylation at the p21 promoter, stimulated p21 expression,

and induced cell cycle arrest [180].

Recent research indicates that EGCG may regulate expression of cell cycle

regulators p21 and p27 and apoptotic proteins by influencing polycomb group
(PcG)-mediated histone modifications [184]. PcG proteins, including BMI-1 and

Cancer Chemoprevention and Nutri-Epigenetics: State of the Art and Future. . . 87



EZH2, are HMTs that increase H3K27 methylation leading to a repressed chroma-

tin conformation and enhanced cell survival. In skin cancer cells EGCG treatment

reduced levels of BMI-1 and EZH2, lowered H3K27me3 levels, and reduced cell

survival. This was associated with induction of cell cycle regulators and activation

of caspases and Bcl-2 family proteins. The inhibitory effects of EGCG on BMI-1
expression were corroborated by overexpression of BMI-1 [184]. EGCG treatment

of human epidermoid carcinoma cells reduced H3K9 methylation and concomi-

tantly increased H3 and H4 acetylation by HDAC inhibition. This was associated

with an upregulation of p16 and p21 mRNA and protein levels [61].

RassF1A (Ras Association Domain family 1, isoform A) is a candidate tumor

suppressor gene located on the chromosome 3p21.3 locus that is frequently

inactivated in cancer by loss of heterozygosity. RassF1A promoter methylation

and silencing have been described as the most frequent epigenetic change observed

in human cancers, including lung, breast, pancreas, kidney, liver, cervix, nasopha-

ryngeal, prostate, thyroid, and other cancers [239, 240]. Loss of RassF1A is

associated with advanced tumor stage and poor prognosis. Since RassF1A
hypermethylation is detectable in various body fluids including blood, urine, nipple

aspirates, sputum, and bronchial alveolar lavages, it may serve as a valuable

diagnostic or prognostic marker [239]. RassF1A knockout mice are viable and

fertile, but prone to spontaneous tumorigenesis [241]. RassF1A is involved in two

pathways commonly deregulated in cancer – cell cycle regulation and apoptosis

[239, 240]. Overexpression of RassF1A in vitro was found to inhibit accumulation

of cyclin D1, thereby blocking G1/S cell cycle progression [242].

Numerous studies have attempted to demethylate and reexpress RassF1A by

chemopreventive agents in vitro or dietary intervention in vivo. Most of these

studies have reported negative results. As summarized in Table 1 (Appendix),

genistein and seleno-D,L-methionine did not influence the methylation status of

RassF1A in prostate cancer cell lines in vitro [83, 111]. In a randomized 4-week

human intervention study with cruciferous vegetables or soy products in combina-

tion with green tea, neither treatments influenced methylation of RassF1A and a

series of other candidate genes in PMBCs of heavy smokers, whereas methylation

of the repetitive element Line1 (long interspersed nuclear element) was slightly but

significantly increased [47]. Also, 4-week dietary intervention in 34 healthy

premenopausal women with daily doses of 40 or 140 mg isoflavones did not

influence RassF1A methylation in intraductal specimens [92]. Jagadeesh et al.

tested the effect of mahanine, a carbazole alkaloid found in some Asian vegetables,

in a series of prostate cancer and several other human cancer cell lines. Mahanine

treatment at low microgram per milliliter concentrations led to reexpression of

RassF1A, reduced expression of cyclin D1 and inhibition of cell proliferation. The

authors did not investigate changes in RassF1A promoter methylation, but DNMT
activity in mahanine-treated prostate cancer cell lines was significantly reduced. In

a subsequent study, a synthesized mahanine derivative was equally or even more

effective as mahanine with respect to inhibition of PC-3 cell proliferation, DNA

synthesis, and DNMT activity, reactivation of RassF1A mRNA expression, and

downregulation of cyclin D1 [94]. The derivative was shown to act by sequestering

88 C. Gerhauser



DNMT3b, but not DNMT3a in the cytoplasm. Consistently, depletion of DNMT3b
was shown previously to cause RASSF1A reactivation, cell growth inhibition, and

apoptosis induction in cancer cell lines, but not in normal cells [14]. In Balb/c nude

mice, the mahanine derivative was not toxic after oral application at concentrations

up to 550 mg/kg. It reduced growth of PC-3 xenografts by 40% when applied at

10 mg/kg body weight every other day for 4 weeks. The influence of epigenetic

mechanisms for tumor growth inhibition was however not investigated [94].

8 Apoptosis

Tissue homeostasis is balanced by cell proliferation and cell death. Evading apo-

ptosis (programmed cell death) has been recognized as one of the hallmarks of

cancer cells [243]. Apoptosis can be triggered when cells sense abnormalities such

as DNA damage, imbalance in signaling by aberrant activation of oncogenes, lack

of survival factors, or hypoxia [243]. p53 is one of the most important pro-apoptotic

mediators involved in sensing DNA damage. It is lost or functionally inactivated in

more than 50% of all human tumors [243]. p53 activity is also epigenetically

controlled: deacetylation of p53 through SIRT1 (silent information regulator 1), a

member of the sirtuin HDAC class III family, prevents p53-mediated

transactivation of cell cycle inhibitor p21 and pro-apoptotic Bax, allowing promo-

tion of cell survival after DNA damage and ultimately tumorigenesis [193]. Inhibi-

tion of SIRT1 should therefore lead to induction of apoptosis by counteracting the

deacetylation of p53 and other key factors such as FOXO3a. However, despite the
fact that SIRT1 can inactivate p53 and is upregulated in several human cancer

types, recent data suggest that SIRT1 is a tumor suppressor in vivo [244].

Two natural products, cambinol and dihydrocoumarin (DHC) have been

identified as SIRT inhibitors. The b-naphthol compound cambinol was identified
in a chemical screen and inhibits both SIRT1 and SIRT2, whereas class I and II

HDACs were not affected [134]. Cambinol acts as a competitive inhibitor with

respect to the histone H4 peptide and as a non-competitive inhibitor with respect to

the co-substrate NAD+. In lung cancer cells, cambinol treatment in combination

with etoposide to induce DNA damage led to hyperacetylation of SIRT target

proteins such as p53, FOXO3a and Ku70. Deacetylation of these later proteins

promoted cell survival under stress, which was abrogated by inhibition of SIRTwith

cambinol. BCL6 is a transcriptional repressor that is also deacetylated by SIRT. In
BCL6-expressing Burkitt lymphoma cells, treatment with cambinol induced apo-

ptosis, accompanied by hyperacetylation of BCL6 and p53. In vivo, cambinol

intervention at a dose of 100 mg/kg i.v. or i.p. inhibited growth of Burkitt lymphoma

xenografts in SCID mice and was well tolerated [134]. DHC, a component of

Melilotus officinalis (sweet clover), is frequently used in cosmetics or as a flavoring

agent. DHC was identified as an inhibitor of yeast Sir2p and human SIRT1 activity.
Treatment of human TK6 lymphoblastoid cells with DHC led to a dose-dependent

induction of ac-p53, cytotoxicity, and apoptosis [143]. Kahyo et al. attempted to
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identify novel inhibitors of sirtuins (SIRTs), also known as class III HDACs. Using

acetylated p53 as a substrate, they identified the synthetic 3,20,30,40-tetrahydroxy-
chalcone as an inhibitor of SIRT activity and p53 deacetylation in vitro. Treatment

of human embryonic kidney cells with the chalcone induced hyperacetylation of

endogenous p53, increased p21 expression and suppressed cell growth. Since

HDAC inhibitory potential of the compound was not tested, it is difficult to

conclude whether p21 induction is indeed mediated via inhibition of SIRT1 [135].

An alternative mechanism leading to hyperacetylation of p53 and apoptosis

induction is mediated through the activity of MTA1/HDAC1 in the nucleosome

remodeling deacetylation (NuRD) complex. MTA1 (metastasis-associated protein

1) expressed in various cancers has been associated with aggressiveness and

metastasis [165]. Kai et al. identified that treatment of prostate cancer cells with

resveratrol resulted in down-regulation of MTA1. This functionally blocked the

MTA/NuRD complex and led to hyperacetylation of p53, trans-activation of p21
and Bax, and apoptosis induction. This effect was corroborated by knockdown of

MTA1 and further enhanced by cotreatment with the HDACi suberoylanilide

hydroxamic acid (SAHA). These combination effects might present an innovative

therapeutic strategy for the management of prostate cancer [165].

The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chro-

mosome 10) negatively regulates the phosphatidylinositol 3-kinase (PI3K)-AKT
pathway that transmits anti-apoptotic survival signals and regulates cell prolifera-

tion, growth and motility [245]. Downstream signaling is indirectly mediated via

transcription factors such as NF-kB and FOXO [245, 246]. Somatic PTEN deletions

and mutations, and epigenetic inactivation of PTEN by promoter methylation or

miRNA silencing are common in multiple tumor types. Silencing through epige-

netic mechanisms frequently occurs in breast, prostate, thyroid, and lung cancer,

glioma, and melanoma, whereas mutations and deletions are common in endome-

trium, bladder, kidney, colorectal cancer, and leukemias. PTEN�/� was shown to

lead to early onset of prostate or mammary cancer in mouse models [245, 246].

PTEN is hypermethylated in breast cancer cell lines MCF-7 and MDA-MB-231.

Stefanska et al. analyzed whether PTEN silencing could be reversed in these cell lines

after incubation with the chemopreventive agents all-trans-retinoic acid (ATRA),
Vitamin D3, and resveratrol alone and in combination with nucleoside analogs such

as 2-chloro-20-deoxyadenosine (2CdA), 9-b-D-arabinosyl-2-fluoroadenine (F-ara-A),
and 5-aza-20-deoxycytosine (5-Aza) [104]. In MCF-7 cells with a methylation level

of about 30% at the PTEN promoter, incubation with all three natural products

resulted in demethylation and reexpression of PTEN. This was associated with

down-regulation of DNMT1 and upregulation of p21 after incubation with vitamin

D3 and resveratrol. The effects were further enhanced by co-incubation with 2CdA

and F-ara-A. In highly invasive MDA-MB-231 cells, the PTEN promoter was>90%

methylated. Only Vitamin D3 treatment was able to reduce methylation and to

enhance concomitantly expression of PTEN, whereas the combined treatment with

nucleoside analogs did not enhance efficacy [104]. Kikuno et al. investigated whether

genistein might suppress AKT signaling via epigenetic mechanisms. In prostate

cancer cell lines, genistein treatment led to reexpression of PTEN and consequential
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inactivation of AKT, resulting in induction of p53 and FOXO3a. Genistein treatment

also upregulated the endogenous NF-kB inhibitor CYLD and decreased constitutive

NF-kB activity. These effects were likely unrelated to inhibition of DNA methyla-

tion, as promoter regions of all of these factors were unmethylated in the investigated

cell lines. Rather, reexpression was associated with elevated H3K9 acetylation

(PTEN, CYLD, p53, and FOXO3a) and loss of H3K9 methylation (PTEN and

CYLD). H3K9 hyperacetylation could be associated with reduced expression and

nuclear localization of SIRT1 after genistein treatment [154].

Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine

kinase acting in the extrinsic death receptor-mediated pathway of apoptosis induc-

tion [233, 247]. DAPK is induced by p53 activation and in turn elevates p53
expression, supporting the existence of an autoregulatory feedback loop between

DAPK and p53 that controls apoptosis. In addition to apoptosis induction, DAPK is

also involved in the control of autophagy, which can lead to cell survival or cell

death depending on the cellular context (review in [247]). DAPK expression is

reduced in a wide range of cancer types by promoter methylation, including lung,

bladder, head and neck, kidney, breast, and B-cell malignancies. Detection of

DAPK methylation has been suggested as a useful prognostic biomarker for inva-

sive and metastatic potential [247]. DAPK is an NF-kB regulated gene.

Hypermethylation of DAPK might be mediated by a targeted recruitment of

DNMTs to RelB (a subunit of NF-kB)-regulated genes via Daxx, an apoptosis

regulator. DAPK function is also lost by deletion and point mutations [247]. In a

study by Fang et al. treatment of mouse lung cancer cells with EGCG in combina-

tion with trichostatin (TSA) or butyrate synergistically increased mRNA levels of

DAPK and retinoic acid receptor b (RARb), indicating a reversal of epigenetic

silencing. DAPK promoter methylation was not investigated in this study.

9 DNA Repair

Cancer genomes are characterized by accumulation of genomic instability and

chromosomal aberrations, associated with underlying defects in the DNA repair

machinery [248]. Important DNA repair genes, such as the mismatch repair gene

hMLH1 and the DNA-alkyl repair gene MGMT (O6-methylguanine DNA

methyltransferase) are commonly inactivated in human cancers by CpG island

hypermethylation. Loss of hMLH1 expression by germ-line mutations and promoter

hypermethylation leads to microsatellite instability that is mainly associated with

hereditary non-polyposis colorectal cancer (HNPCC), but also observed in endo-

metrial and gastric tumors [249]. MGMT repairs promutagenic O6-methylguanine

adducts by transferring the methyl group to a cysteine residue in its active site.

Methylated MGMT is then degraded by the proteasome. MGMT has been shown to

be silenced by aberrant methylation in a large spectrum of human tumors, with

highest hypermethylation rates in tumors of the testis and colon, in retinoblastoma,

glioma, head and neck and cervical cancer, lymphoma, lung, esophageal, gastric
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and pancreatic cancer, and several further cancer types. It has been suggested that

silencing of MGMT is associated with 72% of the mutations observed in the p53
gene, and with 40% of the colon cancer cases induced through K-ras mutations

[250]. Noteworthy, although loss ofMGMT expression contributes to tumorigenesis

and is a marker of poor prognosis, glioma patients with reduced MGMT activity

respond better to treatment with alkylating agents [251].

Several studies have investigated the effect of natural products on the methyla-

tion status and expression of repair genes. EGCG and genistein treatment resulted

in reduced MGMT and hMLH1 promoter methylation and mRNA/protein re-

expression in human esophageal carcinoma cells [37, 55, 78, 252]. Incubation of

colon cancer cell lines with apple polyphenols also led to reexpression of hMLH1
by promoter hypomethylation due to reduced DNMT1 andDNMT3b protein expres-
sion [241]. This effect on DNA methylation may contribute to the colon cancer

preventive efficacy of apple polyphenols (reviewed in [253]). In the transgenic

adenocarcinoma of the mouse prostate (TRAMP) model, intervention with PEITC
given at a dose of 15 mmol daily by gavage for 13 weeks significantly reduced

prostate tumor formation and loweredMGMT promoter methylation in tumor tissue

[101]. In the same model, intervention with 5-aza-20-deoxycytidine (5-Aza) at a
dose of 0.25 mg/kg twice per week completely prevented prostate cancer develop-

ment at 24 weeks of age, whereas in 54% of the control mice poorly differentiated

prostate cancers were detected upon necropsy. Treatment with 5-Aza also

prevented lymph node metastases and dramatically extended survival compared

with control-treated mice. In tumor tissue, MGMT promoter methylation was

reduced by 5-Aza treatment, and MGMT mRNA expression was induced [254].

10 Inflammation and Regulation of NF-kB

Epidemiological evidence indicates that chronic infections and subsequent inflam-

mation are causally linked to about 15–20% of all cancer deaths [255, 256].

Examples include chronic infections with Hepatitis B and C virus and risk for

hepatocellular carcinoma, infections with Helicobacter pylori and gastric cancer,

chronic inflammatory bowel diseases and colorectal cancer, and chronic airway

irritations and inflammation caused by tobacco smoke and lung cancer [255].

Chronic inflammatory conditions are characterized by the accumulation of inflam-

matory cells, which are recruited to the tumor tissue and contribute to the stromal

tumor microenvironment and the release of tumor-promoting pro-inflammatory

mediators [256]. These factors facilitate evasion from host defense mechanisms,

promote genomic instability, regulate growth, migration, and differentiation, alter

response to hormones and chemotherapeutic agents, and stimulate angiogenesis and

metastasis [256, 257].

One of the most important transcription factors controlling inflammatory

conditions is NF-kB [258]. NF-kB is a homodimer or heterodimer of members of

the NF-kB subunit family, consisting of RELA (also known as p65), RELB, REL,
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p50, and p52. All these members contain a REL homology domain that allows

DNA-binding and dimerization (for further detailed information refer to [255,

259]). During carcinogenesis, aberrant NF-kB activation regulates transcription of

anti-apoptotic genes, cyclins, and oncogenes that promote cell proliferation, pro-

angiogenic genes, as well as matrix metalloproteinases and cell adhesion genes

[259]. Interestingly, NF-kB activity is partly controlled by post-translational

modifications, including phosphorylation, acetylation, methylation, and ubiquiti-

nylation [259]. Reversible acetylation at lysine 310 mediated by the HAT p300 is

required for full trans-activating activity [260–262].

NF-kB has been extensively studied as a target for chemopreventive agents

[263]. Interestingly, recent research now establishes a link between NF-kB and

chemopreventive agents via an indirect epigenetic mechanism by inhibition of NF-
kB acetylation mediated by p300HAT. Anacardic acid (6-nonadecyl salicylic acid)
isolated from cashew nut shell liquid was identified as the first natural product

inhibitor of p300 HAT activity. In a natural product screen it was found to inhibit

p300 and PCAF activities with IC50 values of 8.5 and 5 mM, respectively [124]. In a

study by Sung et al., anacardic acid blocked NF-kB activation by TNF-a and

a series of other stimuli and suppressed acetylation and nuclear translocation of

the NF-kB subunit p65. Anacardic acid-mediated effects could be mimicked by

down-regulation of p300 HAT by siRNA, indicating that p300 is a key mediator of

the effects of anacardic acid on NF-kB signaling. In cancer cell lines, anacardic acid

potentiated TNF-a-, cisplatin-, and doxorubicin-mediated apoptosis induction, and

strongly suppressed TNF-a-mediated upregulation of NF-kB target genes, includ-

ing the anti-apoptotic proteins Bcl-2, Bcl-xL, cFLIP, cIAP-1, and survivin, as well
as cyclin D1, c-Myc, Cox-2, VEGF, ICAM-1, and MMP9 involved in invasion and

angiogenesis. Based on these results, anacardic acid might be an interesting lead

compound for further development in cancer prevention [126]. Garcinol is a

polyisoprenylated benzophenone isolated from the Mangosteen tree Garcinia
indica Choisy (Clusiaceae) [264]. Garcinol was identified as a cell-permeable

inhibitor of PCAF and p300 HAT activities with IC50 values of 5 and 7 mM,

respectively. In HeLa cells, garcinol treatment repressed general histone acetylation

and induced apoptosis [151]. Similar to the activities of anacardic acid, garcinol

reduced the expression of various NF-kB target proteins, including anti-apoptotic

survivin, Bcl-2, XIAP, and cFLIP [265]. Although garcinol has previously been

reported to inhibit NF-kB, acetylation of p65 was not analyzed in this study.

Curcumin was identified as a specific inhibitor of p300/CBP in vitro and in cell

culture, whereas other histone-modifying enzymes, including PCAF, HDAC, and
HTM activities were not inhibited by curcumin. HAT inhibition was attributed to a

structural modification of p300, thereby preventing binding of histones or cofactor

acetyl-CoA. Curcumin also inhibited acetylation of p53 as a non-histone target of

p300/CBP [137, 138]. In Raji cells, curcumin treatment significantly down-

regulated levels of HDAC1 and p300 protein and mRNA. Reduction was prevented

by co-treatment with MG-132, an inhibitor of the 26S proteasome [136]. Although

not specifically addressed in these studies, direct inhibition and down-regulation of

p300 might contribute to the well-known inhibition of NF-kB by curcumin [266].
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In a natural product screen, Choi et al. identified gallic acid from rose flowers, a

simple polyphenol found in various fruits, tea, and wine, as a novel inhibitor of p65
acetylation, leading to suppression of lipopolysaccharide (LPS)-induced NF-kB
signaling [149]. Gallic acid was found to inhibit uncompetitively p300 HAT

activity with an IC50 value of 14 mM. Other HATs, such as PCAF and Tip60,
were inhibited to a lesser extent, whereas SIRT1, HDAC, and HMT activities were

not affected. In cell culture, gallic acid prevented p65 acetylation, binding to the IL-
6 promoter, activation of an NF-kB reporter construct by LPS, inhibited inflamma-

tory response to various stimuli, and downregulated the expression of NF-kB-
dependent inflammatory and anti-apoptotic proteins. Inhibition of p65 acetylation

was also confirmed in vivo in macrophages of LPS-stimulated mice [149]. The

same group also identified EGCG as a p300 inhibitor with similar effects on p65
acetylation and downstream pathways as described for gallic acid. Inhibition of p65
acetylation reduced EBV-induced B-lymphocyte transformation [147]. Recently,

they also reported that delphinidin, an anthocyanidin plant pigment isolated from

pomegranate (Punica granatum L.), potently inhibited p300 HAT activity and

suppressed pro-inflammatory signaling through inhibition of NF-kB acetylation in

synoviocyte cells and in T lymphocytes [140]. Interestingly, all three compounds

structurally share a 1,2,3-trihydroxybenzene moiety. The authors did not discuss

whether this structural feature might be important for the observed p300-inhibitory
activity. Overall these data demonstrate that acetylation of NF-kB seems to play an

important role in mediating downstream signaling events, and that regulation of p65
acetylation by inhibition of p300might be an interesting target for chemoprevention.

11 Cell Signaling and Cell Growth

Normal cells do not proliferate without mitogenic stimulatory signals. Conse-

quently, “self-sufficiency in growth signals” was defined as one of the hallmarks

of cancer cells [243].

Androgen receptor (AR) signaling provides the most important growth stimulus

in hormone-dependent prostate cancer. Androgen action is mediated via circulating

testosterone levels. Free testosterone enters prostate cells and is converted by 5a-
reductase to dihydrotestosterone (DHT) with higher affinity to the AR than testos-

terone. AR is sequestered in the cytosol by complexation with heat shock proteins

(HSP) such as HSP90. After DHT binding, receptor dimerization, phosphorylation,

and nuclear translocation, the receptor-ligand complex binds to the androgen-

response element in promoter regions of androgen-responsive genes. This leads to

recruitment of co-activators, which then facilitate transcription of androgen-

sensitive target genes, resulting in increased proliferation and survival [267]. In

early stages of prostate cancer, androgen signaling primarily controls cellular

growth and proliferation [268], and therefore androgen ablation therapy is carried

out as a first line of treatment [269]. An initial response is often followed by an

androgen-resistant, lethal disease state. This transition has been attributed to
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aberrant reactivation of AR-signaling that is hypothesized to occur through multiple

mechanisms, including AR amplification, AR mutations, ligand-independent AR
activation, excessive production of co-activators, and enhanced local production

of androgens [270, 271].

Anti-androgen therapy is achieved by compounds binding to the androgen

receptor. Alternatively, compounds inhibiting 5a-reductase and the formation of

DHT (such as finasteride) are used, but their application in the prevention of

prostate cancer is controversial [272].

Chemopreventive agents might indirectly target AR signaling via epigenetic

mechanisms. HDAC6 was shown to deacetylate and activate non-histone proteins,

including the AR-chaperone heat shock protein 90 (HSP90). Basak et al. reported

that genistein treatment of LNCaP cells led to enhanced proteosomal degradation of

AR. Genistein downregulated the expression ofHDAC6, which resulted in hyperace-
tylation of HSP90 and consequent dissociation of the AR. Genistein-mediated

effects of HDAC6 downregulation on AR were mimicked by HDAC6 siRNA.

These data indicate that prostate cancer preventive potential of genistein may be

mediated through modulating the complex of HDAC6 with HSP90 and AR [152].

Similarly, SFN treatment of LNCaP cells induced rapid hyperacetylation of HSP90
and dissociation of the AR by inhibition of HDAC6 activity. AR degradation led to

decreased expression of AR target genes such as prostate specific antigen (PSA) and

the androgen-regulated fusion of TMPRSS2with the oncogene ERG. SFN-mediated

effects on AR were mimicked by HDAC6 siRNA or treatment with TSA, whereas

overexpression of HDAC6 restored the effects of HDAC6 inhibition. Therefore,

similar to genistein [152], SFN may act as a prostate cancer preventive agent by

affecting the complex of HSP90-AR through HDAC6 inhibition [171]. Recently,

EGCG was shown to affect acetylation of AR via inhibition of HAT activity. This

was associated with reduced acetylation and nuclear translocation of AR, leading to

inhibition of cell proliferation, especially in hormone-dependent prostate cancer

cells [148]. In summary, these indirect epigenetic mechanisms might be interesting

tools to counteract androgen signaling as a means for prostate cancer prevention.

Wnt signaling plays an important role during embryonic tissue development and

tissue homeostasis in adults. Aberrant Wnt signaling has been implicated in cancer

development in various organs, including colon, skin, liver ovary, breast, and lung

[273]. The main function of canonicalWnt signaling is controlling the levels of the

transcriptional co-activator b-catenin. In the absence of Wnt, b-catenin levels in the
cytosol are regulated through interaction and complex formation with the scaffold-

ing protein Axin, APC (the gene product of the adenomatous polyposis coli gene),
casein kinase (CK1), and glycogen-synthase kinase 3b (GSK3b). Phosphorylation
by CK1 and GSK3b marks b-catenin for ubiquitinylation and degradation through

the proteasome. Under these conditions, b-catenin levels in the nucleus are low, and
Wnt-target genes are repressed by binding of the Tcf/Lef (T cell factor/lymphoid

enhancer factor) family of proteins in conjunction with Groucho corepressors

[274]. Binding of a Wnt ligand to the transmembrane receptor Frizzled activates

the Wnt signaling pathway and ultimately results in the recruitment of Axin to the

membrane. Consequently, the CK1/APC/GSK3b destruction complex gets
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disrupted, and b-catenin is stabilized, accumulates in the cytosol, and finally

translocates to the nucleus, where it interacts with Tcf/Lef and activates the tran-

scription of Wnt target genes, including c-Myc, cyclin D1 and many others [274].

Components of theWnt signaling pathway are mutated or altered in over 90% of

human colorectal cancers and in high fractions of other cancer types. In addition to

these genetic alterations, endogenous Wnt antagonists that inhibit Wnt signaling
through direct binding to Wnt are frequently disrupted by DNA methylation in

various cancers. These include secreted frizzled-related proteins (sFRPs) and Wnt-
inhibitory factor 1 (WIF-1) [274].

Several recent studies indicate that the chemopreventive agents EGCG, genis-
tein, and black raspberries reactivate silenced Wnt pathway antagonists by pro-

moter demethylation [41, 60, 80]. In lung cancer cell lines treated with EGCG,
promoter methylation of WIF-1 was potently reduced, resulting in reexpression of

WIF-1. This was associated with decreased b-catenin levels and reduced Tcf/Lef
reporter activity, indicating that EGCG can inhibit aberrant Wnt signaling in vitro

[60]. Wang and Chen reported variable methylation and expression levels of the

Wnt receptor ligand Wnt5a in colon cancer cell lines [80]. In the SW1116 cell line

derived from an early stage colorectal cancer, Wnt5a promoter methylation

correlated with lowest expression compared to cell lines derived from later stage

tumors that were not methylated. Treatment with genistein reduced SW1116 cell

viability by about 80%. Under these conditions, Wnt5a mRNA levels increased

upon treatment, accompanied by about a 10% decrease inWnt5a promoter methyl-

ation [80]. Dose-dependent effects were not analyzed in this study.

Wang et al. performed a small human Phase 1 pilot study with 20 colorectal

cancer patients to investigate the effects of intervention with 60 g/day freeze-dried

black raspberries (BRB) for 1–9 weeks on biomarkers of colorectal cancer [41].

Promoter sequences of Wnt-inhibitory genes WIF1, sFRP2, and sFRP4, as well as
p16 and the developmental gene PAX1 were analyzed for methylation changes.

Also, expression of downstreamWnt target genes, including b-catenin, E-cadherin,
and c-Myc, as well as of markers of proliferation, apoptosis, and angiogenesis, was

measured in colorectal cancer and adjacent normal tissue. At least a 4 weeks

intervention was necessary to detect a significant reduction in promoter methylation

of sFRP2 and Pax6 in both normal and tumor tissue, comparing samples from

before and after intervention. In tumor tissue, promoter methylation of WIF1 was

also significantly lower in the group with higher BRB uptake than in the group with

uptake for only about 2 weeks. Reduced methylation levels correlated with lowered

expression of DNMT1 in both normal and tumor tissue in the high BRB dose group.

Overall, demethylation of Wnt inhibitors led to reduced expression of b-catenin,
E-cadherin, and Ki67 as a proliferation marker in tumor tissue, and induced apoptosis

[41]. This is one of the first studies demonstrating modulation of epigenetic markers

and downstream effects in human target tissue after chemopreventive intervention.

Interestingly, a study by Huang et al. indicates that Wnt inhibitory genes are

repressed not only by DNA methylation but also by histone lysine methylation. As

outlined above, histone lysine methylation is regulated by the balance between

HMT and HDMs (compare also Fig. 3). LSD1 is a FAD-dependent amine oxidase
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which demethylates mono-methylated and di-methylated H3K4 as part of a

multiprotein co-repressor complex and thereby broadly represses gene expression

([187] and references cited therein). Since LSD1 has high homology with mono-

amine and polyamine oxidases and histone lysine residues resemble polyamines,

Huang et al. tested the hypothesis that polyamine analogs might inhibit LSD1
activity and lead to reexpression of epigenetically silenced genes. Treatment of

colon cancer cells with polyamine analogs indeed resulted in re-expression sFRP1,
sFRP4, sFRP5s, and transcription factor GATA5 [186]. This was accompanied by a

dose-dependent global increase in H3K4me1 and H3K4me2 levels and enhanced

occupancy of these activating histone marks and H3K9ac at the promoters of

all re-expressed genes, whereas binding of the repressive marks H3K9me1 and

H3K9me2 was reduced. Knockdown of LSD1 by siRNA recapitulated the effects of

the LSD1 inhibitors on sFRP and GATA5 gene expression [186]. These results were
further strengthened by a follow up study that identified two decamine analogs,

PG11144 and PG11150, as LSD1 inhibitors with similar effects on histone methyl-

ation and sFRP reexpression leading to reduced proliferation and apoptosis induc-

tion in colon cancer cell lines. Combined treatment with PG11144 and 5-Aza

strongly repressed tumor growth of HCT116 colon cancer xenografts [187].

These data indicate the potential value of LSD1 inhibitors for the reactivation of

silenced genes in cancer prevention or therapy.

hTERT is a catalytic subunit of the enzyme telomerase, which is often

upregulated in cancer cells. Telomerase activity is responsible for the maintenance

of telomeres which protect chromosome ends from degradation and repair activities

to ensure chromosomal stability. Loss of telomeres is associated with ageing,

whereas gain of telomerase activity during carcinogenesis enables unlimited cell

division [275]. Sequence variations at the hTERT locus on chromosome 5 have been

associated with many types of cancer, including acute myelogenous leukemia and

tumors of the lung, bladder, prostate, cervix, and pancreas (review in [275]). hTERT
transcription is repressed through binding of the repressor E2F to its promoter

region. In tumor cells, methylation at the E2F binding site prevents E2F binding,

contributing to elevated expression [54].

ATRA treatment is used in differentiation therapy of leukemia. In human

promyelocytic leukemia (HL60) and human teratocarcinoma (HT) cells, ATRA

treatment induced cell differentiation and led to progressive histone

hypoacetylation. This was coupled with gradual accumulation of hTERT promoter

methylation, reduced hTERT expression, and lower telomerase activity [107].

hTERTmethylation was not influenced by ATRA treatment in SKBr3 breast cancer

cells [276]. In two studies with estrogen receptor (ER)-positive and negative breast

cancer cell lines in comparison with an immortalized breast epithelial cell line,

treatment with EGCG or a prodrug of EGCG with enhanced bioavailability and

stability differentially reduced promoter methylation of hTERT at selected CpG

sites in the cancer cell lines. This allowed enhanced binding of the E2F repressor

measured by chromatin immunoprecipitation (ChIP), and reduced expression of

hTERT mRNA. Concomitantly, cell proliferation was reduced in the cancer cell

lines by apoptosis induction [54, 62]. Similarly, genistein treatment inhibited
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hTERT transcription by increasing the binding of the repressor E2F-1 to the hTERT
core promoter. This was facilitated by site-specific hypomethylation of the E2F-1
binding site. Reduced methylation was concomitant with genistein-mediated

downregulation of DNMT expression [81]. Only recently Meeran et al. identified

SFN as a DNA demethylating agent. SFN treatment of breast cancer cell lines

inhibited telomerase activity and repressed hTERT mRNA expression. SFN inter-

vention reduced DNMT1 and DNMT3a protein expression and significantly

lowered hTERT methylation at CpG sites in exon 1. These sites were identified as

binding region for the transcription factor CTCF that is also known to act as an

hTERT repressor. Activating histone marks, including ac-H3, H3K9ac, and ac-H4,

were enhanced at the hTERT promoter, whereas the inactivating marks H3K9me3

and H3K27me3 were decreased. SFN-induced histone hyperacetylation facilitated

binding of hTERT repressors MAD1 and CTCF and decreased binding of c-Myc.
The importance to CTCF for SFN-mediated effects was demonstrated by knock-

down of CTCF that restored hTERT expression and decreased the apoptosis-

inducing potential of SFN. In addition, SFN treatment inhibited HDAC activity

and may modulated histone methylation by increased expression of the histone

demethylase RBP2 [173, 178].

12 Cell Differentiation

Retinoid acid receptors (RAR) belong to the steroid hormone receptor superfamily

of nuclear receptors that play important roles in embryonic development, mainte-

nance of differentiated cellular phenotypes, metabolism, and cell death. Dysfunc-

tion of nuclear receptor signaling is implicated in the development of proliferative,

reproductive or metabolic diseases such as obesity, diabetes, and cancer [277].

Genetic studies have identified three isoforms of RAR, namely RARa, RARb, and
RARg, that are activated by binding of ATRA and function as heterodimers with a

member of the 9-cis retinoic acid receptor (RXR) family represented by RXRa,
RXRb, and RXRg. RXR heterodimerization with RARs or other steroid hormone

receptors allows fine-tuning of nuclear hormone receptor signaling [277].

Alterations in RAR function may contribute to cancer development in two ways.

A fusion of RARa with the promyelocytic leukemia (PML) gene caused by

translocation of RARa leads to formation of a PML-RARa fusion protein that acts

as a co-repressor of ATRA-responsive genes and is involved in the development of

acute promyelocytic leukemia (APL). This defect is efficiently treated by differen-

tiation therapy with ATRA. Some ATRA-resistant leukemia cells fail to respond to

ATRA treatment [278]. Treatment of these ATRA-refractory APL blasts with

ATRA plus HDAC inhibitors or with demethylating agents restored ATRA sensi-

tivity and cell differentiation [226].

RARb has been identified as silenced by promoter methylation in various tumor

types, including colorectal, breast, prostate, head and neck, stomach, and liver

cancer, and lymphoma (overview in [279]). Combination of ATRA with natural
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or synthetic DNMT or HDAC inhibitors has been suggested to facilitate

reexpression of RARb and may provide beneficial effects for chemoprevention

[280]. This was recently demonstrated by the combined intervention with ATRA

and butyrate as an HDACi in colon cancer cell lines that led to demethylation and

reexpression of RARb. Butyrate treatment alone resulted in demethylation of single

CpG sites in the RARb promoter. Its effect on RARb reexpression was further

enhanced by cotreatment with the soy isoflavone genistein alone or in combination

with ATRA [42]. Loss of expression of the RARb2 gene is commonly observed

during breast carcinogenesis. ATRA therapy failed to induce RARb2 in primary

breast tumors if the RARbP2 promoter was methylated. When breast cancer cell

lines were treated with ATRA alone or in combination with trichostatin A (TSA) to

induce histone acetylation, reactivation of RARb2 transcription was facilitated,

accompanied by inhibition of cell growth and apoptosis induction [105, 110].

Treatment of APL cells with ATRA reduced RARb2 promoter methylation linked

with RARb2 mRNA reexpression [106]. In the same cell line, Nouzawa et al. were

unable to detect ATRA-mediated alterations in RARb CpG island methylation.

However, following ATRA-induced differentiation, more than 100 CpG islands

within 1 kB of transcription start sites of a known human gene became

hyperacetylated [108]. Tang et al. investigated the effect of ATRA at two

concentrations alone and in combination with 5-Aza on carcinogen-induced oral

cavity carcinogenesis in mice. Both compounds alone and in combination reduced

the average number of oral lesions per mouse; combined treatment additionally

reduced severity of tongue lesion. Reduction of RARb2 mRNA expression in

tongue tissue as a consequence of the carcinogen treatment was partly prevented

by the combined intervention, whereas carcinogen-induced Cox-2 and c-Myc
mRNA expression was inhibited [281].

In studies with natural products, treatment of esophageal cancer cell lines with

EGCG led to demethylation and reexpression RARb2 in a time-dependent and dose-

dependent manner [37, 55]. Similar effects were observed with genistein in the

same cell line [78]. In breast cancer cell lines, Lee et al. reported a slight reduction

of RARb2 promoter methylation by EGCG intervention [44]. Also, treatment with

two coffee polyphenols, caffeic acid and chlorogenic acid, led to a partial demeth-

ylation of the RARb2 promoter. Both compounds were potent inhibitors of DNMT

activity in vitro [43]. King-Batoon et al. investigated the effects of lycopene and

genistein on RARb2 methylation in breast (cancer) cells. A single low dose of

lycopene, a caroteinoid isolated from tomatoes, reduced RARb2 andHIN1 promoter

methylation in immortalized MCF10A human breast cells, but not in MCF-7 breast

cancer cells [79]. The mechanism of DNA demethylating activity was not further

investigated. In the same study, genistein treatment did not result in demethylation

of the RARb2 promoter in MCF-7 and MDA-MB468 breast cancer cell lines [79].

In a 4-week human intervention trial in 34 healthy premenopausal women, soy

isoflavones at two doses led to dose-dependent changes in RARb2 and CCND2
promoter methylation in mammary tissue. Before treatment, methylation levels of

both genes were very low. The low dose of isoflavones further reduced methylation,

whereas the high dose weakly increased methylation levels of both genes [92].
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Jha et al. investigated RARb2 promoter methylation in cervical cancer cell lines

[51]. Both genistein and curcumin resulted in demethylation of the RARb2 pro-

moter and led to the reactivation of the gene, especially after incubation for 6 days.

Concomitantly with reduction of RARb2 promoter methylation, both compounds

induced apoptosis in the cervical cancer cell lines at higher concentrations [51].

Since DNMT bears a cysteine in its active center, Lin et al. speculated that

disulfiram as a thiol-reactive dithiocarbamate might inhibit DNMT activity. Disul-

firam is an inhibitor of aldehyde dehydrogenase currently used clinically for the

treatment of alcoholism [282], and has been shown to prevent chemically-induced

carcinogenesis in various animal models. Lin et al. demonstrated that disulfiram

dose-dependently inhibited DNMT1 enzyme activity in vitro. In prostate cancer cell

lines, global levels of 5me-C decreased upon disulfiram treatment. At the same

time, disulfiram intervention decreased APC and RARb2 promoter methylation and

led to reexpression of the genes. Cell growth and clonogenic survival of prostate

cancer cell cultures were inhibited in vitro. In vivo, there was a trend for reduced

growth of prostate cancer xenografts. So far, a direct causal relationship between

tumor growth inhibition and demethylating effects has not been established. Volate

et al. analyzed the effect of green tea intervention on azoxymethane-induced colon

carcinogenesis in the APCMin/+ mouse model that is characterized by a defect in

Wnt signaling due to a mutation in the APC gene [64]. Intervention with green tea as

a 0.6% solution for 8 weeks significantly reduced the number of colonic tumors by

28%. Expression of b-catenin and cyclin D1 as a Wnt target gene was reduced in

tumors of the green tea group. Interestingly, RXRa expression was selectively

downregulated early during colon carcinogenesis due to an increase in promoter

methylation, whereas other retinoic acid receptors (RARa, RARb, RXRb, and RXRg)
were all expressed. RXRa silencing was independent of b-catenin, and could be

reversed by green tea intervention [64]. This study showed that dietary levels of

GTP were sufficient to reexpress silenced RXRa at the mRNA and protein level and

to inhibit colon carcinogenesis.

13 Summary and Conclusions

As outlined above, major cellular pathways and cell functions, including drug

metabolism, cell cycle regulation, potential to repair DNA damage or to induce

apoptosis, response to inflammatory stimuli, cell signalling, cell growth control and

differentiation, become deregulated during carcinogenesis by defects in epigenetic

gene regulation. These include, among others, silencing by promoter methylation of

detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-

inducing and DNA repair genes, nuclear receptors, signal transducers and transcrip-

tion factors, as well as modifications of histones and non-histone proteins such as

p53, NF-kB, and HSP90 by acetylation or methylation. Accumulating evidence

indicates that dietary chemopreventive agents can prevent or reverse these

alterations by affecting global DNA methylation, reexpressing tumor suppressor
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genes silenced by promoter methylation, and upregulating genes by altering histone

and non-histone acetylation and methylation, at least in cell culture systems.

There are several challenges for future nutri-epigenetic research in cancer

chemoprevention:

1. A definite link between cancer chemopreventive efficacy in animal models or

human pilot studies and targeting of epigenetic mechanisms is often missing.

Future investigations will have to demonstrate that chemopreventive efficacy is

mediated by epigenetic gene regulation.

2. Some of the described nutri-epigenetic effects appear to be cell type or organ-

specific. Underlying mechanisms for these differences have not yet been

addressed.

3. Given the fact that epigenetics plays an important role in gene regulation during

development, timing of dietary chemopreventive interventions might be critical

to target epigenetic deregulation during tumorigenesis. Epigenetic alterations

are considered as early events during cancer development. Consequently,

interventions with chemopreventive agents might have to start early after birth

to be most effective, and cancer preventive effects through epigenetic

mechanisms might have been underestimated in studies performed so far. The

question of “critical time windows” for application should be addressed in more

detail in the future, both in direction of cancer prevention and with respect to

potential harmful effects.

4. Frequency of application might also be a critical determinant of

chemopreventive efficacy. Several studies have reported that inhibition of

HDACs and consequent histone hyperacetylation is a transient effect. Although

these activities have been demonstrated in rodent models and in humans, it is not

yet clear whether occasional consumption of dietary HDAC inhibitors, for

example from cruciferous vegetables would result in long-term epigenetic regu-

lation of gene expression and downstream chemopreventive effects. This also

applies to other epigenetic mechanisms.

5. Some interventions are apparently more effective when applied in combination,

as exemplified by the combined application of ATRA with DNMT or HDAC

inhibitors. This aspect has not been systematically investigated in nutri-

epigenetics, but might be relevant when comparing activities of isolated

compounds with complex extracts or food items.

6. Most investigations on epigenetic effects have so far only been performed in a

targeted candidate gene approach. It becomes more and more clear that epige-

netic gene regulation is coordinated in an intricate network and involves a

crosstalk between effects on DNA methylation, histone modifications, and

miRNA expression. To understand fully the potential impact of epigenetic

gene regulation and to target it for chemoprevention, we need to consider the

epigenome as an interactive three-dimensional system. Future investigations on

DNA methylation changes and the modulation of activating and repressive

histone marks at a genome-wide level will improve our understanding of mech-

anistic links. These analyses will also provide important clues as to whether
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nutri-epigenetic effects are specific for certain pathways or selective for subsets

of genes. The emergence of novel technologies such as next-generation sequenc-

ing for genome-wide assessment of DNAmethylation and localization of histone

marks, the expected drop in sequencing costs, and the development of bioinfor-

matic tools to integrate systematically available information will facilitate this

type of analyses in future chemoprevention studies.
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