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The Chemopreventive Power
of Isothiocyanates
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and Albena T. Dinkova-Kostova

Abstract Isothiocyanates are derived from their naturally-occurring glucosinolate
precursors, which are abundant in cruciferous vegetables. Numerous scientific stud-
ies beginning more than half a century ago have documented the chemoprotective
activities of these compounds. Isothiocyanates have numerous protein targets
through which they exert protection in the context of various diseases such as cancer,
neurodegeneration, inflammatory disease, metabolic disease and infection. Themajor
mechanisms by which the isothiocyanates confer protection involve induction of
stress response pathways that restore the cellular redox and protein homeostasis, and
contribute to resolution of inflammation. However, high concentrations of
isothiocyanates cause cell cycle arrest and selectively kill cancer cells by inducing
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apoptosis, autophagy or necrosis. In this review, we present readers with a detailed
overview of isothiocyanates functions and discuss their molecular targets and anti-
neoplastic effects. Furthermore, we provide an up-to-date summary of the evidence
on the chemoprotective activities of the most widely-studied isothiocyanates: sulfo-
raphane, phenethyl isothiocyanate (PEITC) and benzyl isothiocyanate (BITC).

Keywords Isothiocyanates · Cancer · Chemoprevention · Sulforaphane · PEITC ·
BITC

9.1 Introduction

Isothiocyanates (ITCs) are biologically active molecules which are derived from
glucosinolate phytochemical precursors. Glucosinolates are S-β-thioglucoside N-
hydroxysulfates (Fig. 9.1) that are abundant in cruciferous (Brassicacea) plants.
Chemically, there are three different types of glucosinolates, according to the origin
of their side chain: (1) aromatic (from Phe or Tyr); (2) aliphatic (from Leu, Ile, Met,
or Val); and (3) indole (from Trp) (Fahey et al. 2001; Halkier and Gershenzon 2006).
The same plants which contain glucosinolates also have β-thioglucosidase enzymes,
known as myrosinases (EC 3.2.3.1), which, however, are physically separated from
their glucosinolate substrates. Enzyme and substrate only come in contact when the
integrity of the plant tissue is compromised, such as during injury or chewing. The
myrosinase reaction results in rapid hydrolysis of the glucosinolates to give rise to a
variety of reactive compounds (Fig. 9.1). ITCs represent one of the major types of
products of the myrosinase reaction and contribute to most of the biological effects
that have been associated with glucosinolates. Around 120 natural ITCs have been
identified so far (Verkerk et al. 2009; Herr and Buchler 2010).

Fig. 9.1 The myrosinase reaction. Glucosinolates are hydrolyzed by β-thioglucosidases
(myrosinases) to give unstable aglucones and liberate glucose. Depending on the reaction condi-
tions, a variety of reactive products can be formed, the most common of which are nitriles,
isothiocyanates and thiocyanates
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ITCs are characterized by high chemical reactivity due to the electrophilicity of
the central carbon of the isothiocyanate (—N¼C¼S) group. The ITC group reacts
readily with sulfur-, nitrogen-, and oxygen-centered nucleophiles (Fig. 9.2). Cyste-
ine residues in proteins and glutathione (GSH) are the most common targets of ITCs,
forming thiocarbamate products. The α-amino groups in N-terminal residues of
proteins, the ε-amino groups of lysines, or even secondary amines, such as proline,
can participate in alkylation reactions with ITCs, forming thiourea products. Finally,
under certain although not physiological conditions, ITCs can also react with
hydroxyl group-containing amino acid residues (e.g., tyrosine).

Natural ITCs or their synthetic analogs have been shown to prevent cancer
development by limiting the exposure of cells to carcinogenic insults, thereby
interfering with the initiation stage of carcinogenesis. The main mechanisms of
early prevention include inhibition of intracellular activation of pro-carcinogens or
acceleration of carcinogen detoxification. ITCs have been found to modulate tran-
script levels and inhibit phase I drug metabolizing enzymes, such as cytochrome
P450 oxidases, involved in bioactivation of pro-carcinogens (Verkerk et al. 2009;

Fig. 9.2 Reactivity of isothiocyanates. The central carbon of the isothiocyante (—N¼C¼S) group
is electrophilic and reacts readily with sulfur-, nitrogen-, and oxygen-centered nucleophiles. The
most common reactions are: (a) conjugation with sulfhydryl groups, such as the sulfhydryl group of
cysteine, (b) alkylation with α-amino groups in N-terminal residues and the ε-amino group of
lysine, (c) reactions with the secondary amine in proline, and (d) reactions with hydroxyl group-
containing residues, such as tyrosine
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Herr and Buchler 2010). The potential and mechanisms of ITCs to induce
cytoprotective enzymes are discussed in detail below, using sulforaphane as an
example. Some of the mechanisms of cancer prevention by ITCs independent of
their effects on carcinogen detoxification have been attributed at least in part to their
cytotoxic properties. The current knowledge in this area will also be covered,
emphasizing the molecular targets and signaling pathways contributing to ITCs
toxicity towards cancer cells. In addition, ITCs have been reported to potently
suppress the promotion and progression of carcinogenesis by affecting various
signaling pathways related to inflammation (Heiss et al. 2001), angiogenesis (Xiao
and Singh 2007; Bertl et al. 2006), autophagy (Powolny et al. 2011) metastasis
formation (Wu et al. 2010), and dysregulation of gap junctional intercellular com-
munications (Forster et al. 2014). Several reviews have discussed previously the
various aspects of the mechanisms involved in the chemopreventive potential of
ITCs (Antosiewicz et al. 2008; Cheung and Kong 2010; Fimognari et al. 2012; Jacob
et al. 2011; Loo 2003; Prashar et al. 2012; Valgimigli and Iori 2009; Wu et al. 2009;
Wu and Hua 2007; Zhang 2010; Zhang et al. 2005, 2006a).

9.2 The Diverse Family of Cytoprotective Proteins

A large family of proteins protects eukaryotic cells and organisms against the
toxicities of electrophiles and oxidants which are the major causes of chronic
degenerative diseases (Dinkova-Kostova and Talalay 2008, 2010). This family
comprises enzymes that are involved in the metabolism and transport of a wide
array of endo- and xenobiotics, as well as those that have direct and indirect
antioxidant activities. Their functional diversity is truly extraordinary, and some
examples are given in Table 9.1.

Notably, the distinction between direct and indirect antioxidant enzymes is not
always straight-forward as many of these proteins perform both functions. For
example, NQO1 is an indirect antioxidant enzyme because, by catalyzing the
obligatory 2 electron-reduction of quinones, it prevents the formation of
semiquinone radicals which, in the presence of oxygen, could lead to redox cycling,
glutathione depletion, and oxidative stress (Dinkova-Kostova and Talalay 2010).
NQO1 is also a direct antioxidant enzyme by virtue of its superoxide scavenging
activity (Siegel et al. 2004). What is most important however is the fact that the
inducibility and the enormous functional diversity of these cytoprotective enzymes
underlie the capacity of the cell to mount a coordinate robust response to various
conditions of stress, allowing adaptation and survival. It is thus not surprising that
the genes coding for cytoprotective proteins share a common transcriptional regula-
tion, with transcription factor Nrf2 (NF-E2 p45-related Factor 2) being the master
regulator of their expression (Motohashi and Yamamoto 2004). In addition to its
direct influence on the transcription of cytoprotective genes, it is becoming increas-
ingly clear that some of the protective effects of Nrf2 activation are mediated through
cross-talks with other transcription factors, such as the aryl hydrocarbon receptor
(AhR), nuclear factor κB (NF-κB), p53, and Notch1 (Wakabayashi et al. 2010).
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9.3 Sulforaphane

9.3.1 Induction of Endogenous Cytoprotective Enzymes In
Vitro

Sulforaphane [1-isothiocyanato-(4R)-(methylsulfinyl)butane, Fig. 9.3] was isolated
from extracts of broccoli (Brassica oleracea) as the principal inducer of the marker
cytoprotective enzyme NQO1 using a highly quantitative bioassay in murine hepa-
toma Hepa1c1c7 cells (Zhang et al. 1992; Zhang and Tang 2007).

Over the years following this discovery, induction by sulforaphane of
cytoprotective enzymes has been demonstrated in various cell culture and animal
models by numerous independent research groups (Tables 9.2 and 9.3). In the
Hepa1c1c7 cell line, sulforaphane treatment increased NQO1 and GST activities
(Zhang et al. 1992; Gerhauser et al. 1997; Jiang et al. 2003; Matusheski et al. 2004;
Anwar-Mohamed and El-Kadi 2009). Similar effects have been observed in rat
bladder carcinoma NBT-II cells (Zhang et al. 2006b) and in murine NIH3T3
fibroblasts (Ernst et al. 2011). Exposure to sulforaphane in wild-type, but not

Table 9.1 The diverse family of cytoprotective proteins

Protein function Examples

Conjugation Glutathione S-transferases (GSTs)
UDP-glucuronosyltransferases (UGTs)

Export of xenobiotics and/or their metabolites Solute carrier transporters
ATP-binding cassette transporters

Synthesis, regeneration, utilization of glutathione γ-Glutamate-cysteine ligase (γ-GCL)
Glutathione reductase
GSTs

Antioxidant enzymes Heme oxygenase 1 (HO-1)
NAD(P)H:Quinone oxidoreductase
1 (NQO1)
GSTs

Synthesis of reducing equivalents Glucose 6-phosphate dehydrogenase
6-Phosphogluconate dehydrogenase
Malic enzyme 1 (ME1)
Isocitrate dehydrogenase 1 (IDH1)

Anti-inflammatory enzymes Leukotriene B4 dehydrogenase

Prevention of damage by metal overload Ferritin
Metallothioneins

Repair and removal of misfolded or damaged
proteins

Proteosomal subunits
Proteins involved in autophagy

Fig. 9.3 Chemical structure of sulforaphane [1-isothiocyanato-(4R)-(methylsulfinyl)butane]

9 The Chemopreventive Power of Isothiocyanates 275



T
ab

le
9.
2

C
yt
op

ro
te
ct
iv
e-
in
du

ci
ng

po
te
nt
ia
l
of

su
lf
or
ap
ha
ne

in
vi
tr
o

O
rg
an

C
el
l
lin

e
S
ul
fo
ra
ph

an
e
co
nc
.

T
re
at
m
en
t

tim
e

C
yt
op

ro
te
ct
iv
e
en
zy
m
es

in
du

ce
d

R
ef
er
en
ce
s

L
iv
er

H
ep
a1
c1
c7

0.
1–
25

μM
24

,4
8
h

N
Q
O
1,

G
S
T

Z
ha
ng

et
al
.(
19

92
),
G
er
ha
us
er

et
al
.(
19

97
),

Ji
an
g
et
al
.(
20

03
),
M
at
us
he
sk
i
et
al
.(
20

04
),

A
nw

ar
-M

oh
am

ed
an
d
E
l-
K
ad
i
(2
00

9)

H
ep
G
2

5,
10

,1
2,

20
,2

5
μM

12
,2

4
h

N
Q
O
1,

G
S
T
,U

G
T
,H

O
-1
,

th
io
re
do

xi
n
re
du

ct
as
e
1,

G
S
H

Ji
an
g
et
al
.(
20

03
),
G
an

et
al
.(
20

10
),

A
bd

el
ha
m
id

et
al
.(
20

10
),
A
m
ar
a
an
d
E
l-
K
ad
i

(2
01

1)
,Z

ha
ng

et
al
.(
20

03
),
B
ac
on

et
al
.

(2
00

3)

P
ri
m
ar
y
hu

m
an

he
pa
to
cy
te
s

4–
50

μM
48

,7
2
h

N
Q
O
1,

G
S
T

G
ro
ss
-S
te
in
m
ey
er

et
al
.(
20

04
),
M
ah
eo

et
al
.

(1
99

7)
,M

or
el
et
al
.(
19

97
)

P
ri
m
ar
y
ra
t

he
pa
to
cy
te
s

10
μM

48
,7

2
h

G
S
T

M
ah
eo

et
al
.(
19

97
),
M
or
el
et
al
.(
19

97
)

B
re
as
t

M
C
F
7

25
μM

24
h

N
Q
O
1

Ji
an
g
et
al
.(
20

03
)

M
C
F
10

A
15

μM
24

,4
8
h

N
Q
O
1,

A
K
R
s,
A
L
D
H

A
gy

em
an

et
al
.(
20

12
)

P
ro
st
at
e

L
N
C
aP

0.
1–
25

μM
24

,4
8
h

N
Q
O
1,

G
S
T
,H

O
-1

Ji
an
g
et
al
.(
20

03
),
B
ro
ok

s
an
d
P
at
on

(1
99

9)
,

B
ro
ok

s
et
al
.(
20

01
),
C
la
rk
e
et
al
.(
20

11
)

L
N
C
aP
az
aC

0.
1–
15

μM
48

h
N
Q
O
1,

G
S
T
,γ
G
C
L

B
ro
ok

s
an
d
P
at
on

(1
99

9)

M
D
A

P
C
a
2a

0.
1 –
15

μM
48

h
N
Q
O
1,

G
S
T
,γ
G
C
L

B
ro
ok

s
et
al
.(
20

01
)

M
D
A

P
C
a
2b

0.
1–
15

μM
48

h
N
Q
O
1,

G
S
T
,γ
G
C
L

B
ro
ok

s
et
al
.(
20

01
)

P
C
-3

0.
1–
15

μM
48

h
N
Q
O
1,

G
S
T
,γ
G
C
L
,H

O
-1

B
ro
ok

s
et
al
.(
20

01
),
C
la
rk
e
et
al
.(
20

11
)

T
S
U
-P
r1

0.
1–
15

μM
48

h
N
Q
O
1,

G
S
T
,γ
G
C
L

B
ro
ok

s
et
al
.(
20

01
)

B
P
H
1

15
μM

12
h

N
Q
O
1,

H
O
-1

C
la
rk
e
et
al
.(
20

11
)

P
rE
C

15
μM

12
h

N
Q
O
1,

H
O
-1

C
la
rk
e
et
al
.(
20

11
)

C
ol
on

H
T
-2
9

5–
25

μM
2–

24
h

N
Q
O
1,

ca
rb
on

yl
re
du

ct
as
e,
γG

C
L
,

A
K
R
1B

1
Ji
an
g
et
al
.(
20

03
),
E
be
rt
et
al
.(
20

10
)

C
ac
o-
2

1,
5,

10
,2

0,
50

μM
8,

24
,7

2
h

N
Q
O
1,

G
S
T
,U

G
T
,M

R
P
2

S
ve
hl
ik
ov

a
et
al
.(
20

04
),
Ja
ku

bi
ko

va
et
al
.

(2
00

5a
),
T
ra
ka

et
al
.(
20

05
)

B
la
dd

er
N
B
T
-I
I

4,
8
μM

24
h

N
Q
O
1,

G
S
T

Z
ha
ng

et
al
.(
20

06
b)

276 S. Dayalan Naidu et al.



K
id
ne
y

L
L
C
-P
K
1

1,
3,

5
μM

24
h

N
Q
O
1,

γG
C
L
,G

S
H

G
ue
rr
er
o-
B
el
tr
an

et
al
.(
20

10
)

A
or
ta

A
10

0.
5–
5
μM

48
h

N
Q
O
1,

G
S
T
,G

S
H
,S

O
D
,c
at
al
as
e,

gl
ut
at
hi
on

e
pe
ro
xi
da
se
,g

lu
ta
th
io
ne

re
du

ct
as
e

Z
hu

et
al
.(
20

08
)

S
pi
na
l

co
rd

P
ri
m
ar
y
ra
tm

ot
or

ne
ur
on

s
10

μM
48

h
N
Q
O
1,

H
O
-1

C
ha
ng

et
al
.(
20

10
)

B
ra
in

P
ri
m
ar
y
m
ur
in
e

co
rt
ic
al
ne
ur
on

s
0.
01
–
1
μM

24
h

N
Q
O
1,

G
S
T
,g

lu
ta
th
io
ne

re
du

ct
as
e,

th
io
re
do

xi
n
re
du

ct
as
e
1

V
au
zo
ur

et
al
.(
20

10
)

P
ri
m
ar
y
m
ur
in
e

hi
pp

oc
am

pa
l

ne
ur
on

s

0.
5
μM

24
h

N
Q
O
1,

H
O
-1
,γ
G
C
L

S
oa
ne

et
al
.(
20

10
)

P
ri
m
ar
y
ra
t

ni
gr
os
tr
ia
ta
l

co
cu
ltu

re
s

5
μM

48
h

N
Q
O
1

S
ie
be
rt
et
al
.(
20

09
)

P
ri
m
ar
y
ra
tc
or
ti-

ca
l
as
tr
oc
yt
es

5,
10

μM
24

,4
8
h

N
Q
O
1,

H
O
-1
,γ
G
C
L
,t
hi
or
ed
ox

in
re
du

ct
as
e

D
an
ilo

v
et
al
.(
20

09
),
B
er
gs
tr
om

et
al
.(
20

11
)

S
K
-N

-S
H

0.
5–
5
μM

24
h

N
Q
O
1,

G
S
H

M
as

et
al
.(
20

12
)

R
et
in
a

A
R
P
E
-1
9

0.
62

5,
2.
5
μM

24
h

N
Q
O
1,

gl
uc
os
e-
6-
ph

os
ph

at
e
de
hy

-
dr
og

en
as
e,
gl
ut
at
hi
on

e
re
du

ct
as
e

G
ao

et
al
.(
20

01
)

L
un

g
P
ri
m
ar
y
hu

m
an

br
on

ch
ia
l
ep
ith

e-
lia
l
ce
lls

1
μM

24
,4

8
h

N
Q
O
1

T
an

et
al
.(
20

10
)

H
B
E
C

1
μM

24
,4

8
h

N
Q
O
1

T
an

et
al
.(
20

10
)

B
E
A
S
-2
B

5
μM

12
,2

4
h

N
Q
O
1,

G
S
T
,H

O
-1
,γ

G
C
L

S
ta
rr
et
t
an
d
B
la
ke

(2
01

1)
,R

itz
et
al
.(
20

07
)

S
ki
n

N
or
m
al
hu

m
an

ke
ra
tin

oc
yt
es

2.
5,

5,
25

μM
24

h
N
Q
O
1,

γG
C
L

M
ar
ro
t
et
al
.(
20

08
)

N
or
m
al
hu

m
an

m
el
an
oc
yt
es

1,
5,

10
μM

24
h

N
Q
O
1,

H
O
-1
,γ
G
C
L

M
ar
ro
t
et
al
.(
20

08
)

H
aC

aT
hu

m
an

ke
ra
tin

oc
yt
es

1–
5
μM

24
,4

8
h

N
Q
O
1,

G
S
H
,H

O
-1
,γ

G
C
L

D
in
ko

va
-K

os
to
va

et
al
.(
20

06
),
W
ag
ne
r
et
al
.

(2
01

0)
,Z

hu
an
d
B
ow

de
n
(2
00

4)

P
E
m
ur
in
e

ke
ra
tin

oc
yt
es

0.
2–
5
μM

24
,4

8
h

N
Q
O
1,

G
S
H

D
in
ko

va
-K

os
to
va

et
al
.(
20

06
)

(c
on

tin
ue
d)

9 The Chemopreventive Power of Isothiocyanates 277



T
ab

le
9.
2

(c
on

tin
ue
d)

O
rg
an

C
el
l
lin

e
S
ul
fo
ra
ph

an
e
co
nc
.

T
re
at
m
en
t

tim
e

C
yt
op

ro
te
ct
iv
e
en
zy
m
es

in
du

ce
d

R
ef
er
en
ce
s

B
lo
od

C
D
34

-d
er
iv
ed

hu
m
an

de
nd

ri
tic

ce
lls

2
μM

6,
24

h
N
Q
O
1,

H
O
-1

A
de

et
al
.(
20

09
)

T
H
P
-1

m
ye
lo
id

ce
lls

2
μM

6,
24

h
N
Q
O
1,

H
O
-1

A
de

et
al
.(
20

09
)

R
am

os
2G

6
hu

m
an

B
ly
m
ph

oc
yt
es

5–
20

μM
16

h
N
Q
O
1,

G
S
T

W
an

an
d
D
ia
z-
S
an
ch
ez

(2
00

6)

H
um

an
P
B
M
C

5–
20

μM
16

h
N
Q
O
1,

G
S
T

W
an

an
d
D
ia
z-
S
an
ch
ez

(2
00

6)

F
ib
ro
bl
as
ts

M
ou

se
em

br
yo

ni
c

fi
br
ob

la
st
(M

E
F
s)

3,
4,

5,
8
μM

24
h

N
Q
O
1,

G
S
T
,γ
G
C
L
,G

S
H

Z
ha
ng

et
al
.(
20

06
b)
,N

io
ie
t
al
.(
20

03
),

H
ig
gi
ns

an
d
H
ay
es

(2
01

1)

N
IH

3T
3

fi
br
ob

la
st
s

5,
10

μM
24

h
N
Q
O
1,

γG
C
L
,H

O
-1

E
rn
st
et
al
.(
20

11
)

278 S. Dayalan Naidu et al.



Table 9.3 Cytoprotective-inducing potential of sulforaphane in vivo

Organ Species

Sulforaphane
dose and route
of
administration

Treatment
duration

Cytoprotective
enzymes induced References

Liver Mouse 15 μmol/day,
p.o.

5 days NQO1, GST Zhang et al.
(1992), Hu
et al. (2006a)90 mg/kg, p.o. Single

dose
Phase 2 and 3 drug
metabolizing
enzymes, heat shock
proteins,
proteasomal
subunits

Rat 40, 200, 500,
or 1000 μmol/
kg, p.o.

5 days NQO1, GST Matusheski
and Jeffery
(2001),
Munday and
Munday
(2004)

Forestomach Mouse 15 μmol/day,
p.o.

5 days NQO1, GST Zhang et al.
(1992)

Stomach Mouse 15 μmol/day,
p.o.

5 days NQO1, GST Zhang et al.
(1992)

Rat 40, 80, or
160 μmol/kg,
p.o. As broc-
coli extract

14 days NQO1, GST Zhang et al.
(2006b)

40, 80, or
160 μmol/kg
in diet as
broccoli
extract

14 days

Small
intestine

Mouse 15 μmol/day,
p.o.

5 days NQO1, GST Zhang et al.
(1992),
McMahon
et al. (2001),
Thimmulappa
et al. (2002)

3 μmol/g of
diet

14 days NQO1, GST

9 μmol/day, p.
o.

7 days NQO1, GST, γGCL,
UGT, epoxide
hydrolase, glutathi-
one peroxidase, glu-
tathione reductase,
ferritin, haptaglobin,
NADPH
regenerating
enzymes (glucose
6-phosphate dehy-
drogenase,
6-phosphogluconate
dehydrogenase,
malic enzyme)

(continued)
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Table 9.3 (continued)

Organ Species

Sulforaphane
dose and route
of
administration

Treatment
duration

Cytoprotective
enzymes induced References

Colon Rat 40, 200, 500,
or 1000 μmol/
kg, p.o.

5 days NQO1, GST Matusheski
and Jeffery
(2001),
Munday and
Munday
(2004)

Pancreas Rat 40, 200, 500,
or 1000 μmol/
kg, p.o.

5 days NQO1, GST Matusheski
and Jeffery
(2001),
Munday and
Munday
(2004)

Lung Mouse 15 μmol/day,
p.o.

5 days NQO1, GST Zhang et al.
(1992)

Mammary
gland

Mouse 3 mg/mouse,
p.o.

4 days NQO1, GST Gerhauser et al.
(1997)

Rat 150 μmol, p.
o.

Single
dose

NQO1, HO-1 Cornblatt et al.
(2007)

Retina Mouse 0.5 mg/day, i.
p.

3 days Thioredoxin,
thioredoxin reductase

Kong et al.
(2007), Tanito
et al. (2005)

Brain Mouse 50 mg/kg, i.p. 16 h NQO1, HO-1 Innamorato
et al. (2008),
Jazwa et al.
(2011)

Rat 5 mg/kg, i.p. Single
dose

NQO1, GST., SOD,
catalase, HO-1

Zhao et al.
(2007a), Hong
et al. (2010),
Ping et al.
(2010), Chen
et al. (2011)

Spinal cord Rat 5 mg/kg, i.p. Single
dose

NQO1, HO-1, γGCL Wang et al.
(2012b)

Sciatic nerve Mouse 0.5 or 1 mg/
kg

14 days NQO1, HO-1 Negi et al.
(2011)

Skin Mouse 1 μmol/day,
topically

3 days NQO1, K16, K17 Kerns et al.
(2007), Talalay
et al. (2007)

(continued)
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Nrf2-knockout primary mouse embryonic fibroblasts (MEFs), caused an induction of
2- to 10-fold in the levels of mRNA for γ-glutamate-cysteine ligase (γ-GCL) catalytic
(GCLC) and modifier (GCLM) subunits, GSTs and NQO1, and increased the levels
of total GSH by 1.5- to 1.9-fold (Nioi et al. 2003; Higgins and Hayes 2011). In
porcine renal epithelial cells (LLC-PK1), sulforaphane induced NQO1 and γGCL,
increased the levels of GSH, and protected against cisplatin-mediated oxidative
stress, mitochondrial membrane depolarization and cell death (Guerrero-Beltran
et al. 2010). Furthermore, in isolated renal mitochondria from Wistar rats that had
been treated with cisplatin, two intravenous injections of sulforaphane (the first one
24 h before and the second one 24 after cisplatin treatment) prevented the cisplatin-
induced increase in reactive oxygen species and depletion of GSH, and restored the
ATP content and oxygen consumption (Guerrero-Beltran et al. 2010). Similar pro-
tection was also observed in liver of cisplatin-treated animals (Gaona-Gaona et al.
2011). Exposure of rat aortic smooth muscle A10 cells to sulforaphane resulted in the
induction of a number of cytoprotective enzymes in both whole-cell lysates as well as
in mitochondrial fractions, including NQO1, superoxide dismutase (SOD), catalase,
glutathione peroxidase, glutathione reductase, GST, increased the levels of GSH, and
protected against the toxicities of oxidants and electrophiles, such as superoxide,
H2O2, peroxynitrite, 4-hydroxy-2-nonenal, and acrolein (Zhu et al. 2008).

In motor neurons grown in organotypic cultures of rat spinal cord, sulforaphane
induced NQO1 and heme oxygenase 1 (HO-1), and protected against glutamate-
mediated excitotoxicity (Chang et al. 2010). Protection by sulforaphane against 5-S-
cysteinyl-dopamine-induced neuronal injury was observed in cultures of primary
murine cortical neurons and shown to correlate with increased expression and
activity of the M-class (M1, M3 and M5) GSTs, glutathione reductase, thioredoxin

Table 9.3 (continued)

Organ Species

Sulforaphane
dose and route
of
administration

Treatment
duration

Cytoprotective
enzymes induced References

Bladder Rat 40 μmol/kg,
p.o.

5 days NQO1, GST Zhang et al.
(2006b),
Munday and
Munday
(2004),
Munday et al.
(2008)

160 μmol/kg
in diet as
broccoli
extract

6 and
12 weeks

40, 80, or
160 μmol/kg,
p.o., as broc-
coli extract

14 days

40, 80, or
160 μmol/kg
in diet as
broccoli
extract

14 days
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reductase and NQO1 (Vauzour et al. 2010). In primary murine hippocampal neurons
exposed to hemin or to the combination of oxygen and glucose deprivation, treat-
ment with sulforaphane during the reoxygenation phase induced NQO1, HO-1 and
GCLM, and protected against cell death (Soane et al. 2010). Dopaminergic neurons
that were isolated from Sprague-Dawley rats and grown in organotypic nigrostriatal
cocultures were protected against the toxicity of 6-hydroxydopamine by prior
treatment with sulforaphane, and the observed protection was attributed to the
increase in antioxidant capacity (Siebert et al. 2009). When primary cultures of rat
cortical astrocytes were exposed to sulforaphane either 48 h prior to, or for 48 h after,
a 4-h period of oxygen and glucose deprivation, both pre- and post-treatment was
protective against oxidative stress (assessed by immunostaining for 8-hydroxy-2-
deoxyguanosine) and cell death, with the concomitant induction of the levels of
mRNA, protein, and enzyme activity of NQO1 (Danilov et al. 2009). In a similar cell
culture system, sulforaphane exposure for 4 h induced the levels of mRNA for
NQO1 and HO-1 (Bergstrom et al. 2011). Repeated sulforaphane administration
resulted in an accumulation of mRNA and protein levels of NQO1 and was protec-
tive against oxidative damage. Similar effects of sulforaphane were also observed in
human adult retinal pigment epithelial cells (ARPE-19), keratinocytes (HaCaT), and
murine leukemia (L1210) cells (Gao et al. 2001).

In primary normal human bronchial epithelial cells as well as in the immortalized
human bronchial epithelial cell line HBEC, sulforaphane caused a robust upregulation
of NQO1 mRNA and protein levels (Tan et al. 2010). Induction of NQO1 by
sulforaphane was also observed in primary cultures of human hepatocytes (Gross-
Steinmeyer et al. 2004). In the Caco-2 human colon cancer cell line, NQO1, multidrug
resistance-associated protein 2 (MRP2), GSTA1 and UDP-glucuronosyltransferase
were elevated upon sulforaphane treatment (Svehlikova et al. 2004; Jakubikova et al.
2005a). In the human hepatoma cell line HepG2, sulforaphane treatment also
increased the transcription of the endogenous NQO1 (Gan et al. 2010; Abdelhamid
et al. 2010; Amara and El-Kadi 2011), thioredoxin reductase 1 (Zhang et al. 2003), and
HO-1 (Gan et al. 2010). Moreover, in combination with selenium, sulforaphane
treatment resulted in protection against paraquat-induced cell death (Zhang et al.
2003). In primary human and rat hepatocytes, sulforaphane induced the transcription
of GSTA1/2 mRNA (Maheo et al. 1997; Morel et al. 1997). In HepG2 cells and in
primary human hepatocytes, treatment with sulforaphane inhibited the formation of
PhiP-DNA adducts; the protective effect correlated with transcriptional upregulation
of UDP-glucuronosyltransferase and GSTA1 (Bacon et al. 2003). In the human
dopaminergic neuroblastoma SK-N-SH cell line, sulforaphane induced NQO1
enzyme activity and increased the levels of glutathione (Mas et al. 2012). Induction
of NQO1 was also observed in a number of human prostate cancer cell lines (Jiang
et al. 2003; Brooks and Paton 1999; Brooks et al. 2001). The levels of GSH and
GSH-related enzymes, such as GCLC and GSTs, were also upregulated (Brooks and
Paton 1999). In the human BEAS-2B epithelial cell line, sulforaphane increased the
expression of NQO1, HO-1, and GCLM (Starrett and Blake 2011). Sulforaphane also
increased the levels of mRNA for HO-1 and NQO1 in normal (PrEC), benign
hyperplastic (BPH1) and cancerous (LNCaP and PC3) human prostate epithelial
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cells (Clarke et al. 2011), and the mRNA for carbonyl reductase 3, a member of the
short-chain dehydrogenase/reductase superfamily, in HT-29 colon cancer cells (Ebert
et al. 2010). Upregulation of NQO1 was observed when cultured normal human
keratinocytes and melanocytes were exposed to sulforaphane (Marrot et al. 2008). In
murine and human (HaCaT) keratinocytes, the enzyme activity of NQO1, the GSH
content (Zhu et al. 2004; Dinkova-Kostova et al. 2006) and the mRNA and protein
levels for NQO1, HO-1 and γ-GCL (Wagner et al. 2010) were all upregulated by
exposure to sulforaphane. NQO1 and HO-1 were also induced by sulforaphane in
human CD34-derived dendritic cells isolated from umbilical cord blood, and in the
THP-1 myeloid cell line (Ade et al. 2009). Sulforaphane treatment also caused
increased gene expression of NQO1, GSTM1 and GSTP1 in cultured Ramos
2G6 human B lymphocytes and PBMCs isolated from blood (Wan and Diaz-Sanchez
2006), as well as in the airway epithelial cell line BEAS-2B (Ritz et al. 2007). In the
estrogen receptor negative human breast epithelial MCF10A cell line, sulforaphane
exposure led to a profound upregulation of the aldo-keto reductase family members
AKR1B10, AKR1C1, AKR1C2 and AKR1C3, the aldehyde dehydrogenase 3 family
member ALDH3A1, and of NQO1, as revealed by the use of both microarray and
stable isotopic labeling with amino acids in culture (SILAC) approaches (Agyeman
et al. 2012).

9.3.2 Activation of the Antioxidant/Electrophile Responsive
Element in Reporter Systems

The upstream regulatory regions of the genes coding for cytoprotective proteins
contain single or multiple copies of the antioxidant/electrophile response element
(ARE/EpRE, consensus sequence: 50-A/GTGAC/GNNNGCA/G-30) (Rushmore and
Pickett 1990; Friling et al. 1990; Hayes et al. 2010). Activation of gene expression
through the ARE requires binding of transcription factor Nrf2 as a heterodimer with
a small Maf protein (Motohashi and Yamamoto 2004). Thus, in addition to the
effects on endogenous gene expression, ARE- and Nrf2-dependent induction by
sulforaphane has been demonstrated in a number of reporter systems. In the human
hepatoma cell line HepG2 stably transfected with the chloramphenicol
acetyltransferase (CAT) reporter gene under the transcriptional control of the rat
GSTYa promoter, treatment with sulforaphane caused a dose-dependent induction
of the reporter gene (Fei et al. 1996). Similarly, a second reporter HepG2 cell line
that was developed by a stable transfection with the gene encoding green fluorescent
protein (GFP) under the transcriptional control of the thymidine kinase
(TK) promoter adjacent to the ARE, also showed an increase in fluorescence upon
sulforaphane treatment (Zhu and Fahl 2000). When HepG2 cells were transiently
transfected with a CAT reporter under the control of the 50-regulatory region of the
rat NQO1 gene and then exposed to sulforaphane, enhanced CAT expression was
also observed (Gerhauser et al. 1997). Sulforaphane caused induction of the
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ARE-luciferase reporter in the stably transfected MCF7-derived AREc32 human
breast cancer cell line, which contains a luciferase reporter construct controlled by
eight copies of the ARE that is present in both rat GSTA2 and mouse gsta1 genes
(Wang et al. 2006, 2010; Dinkova-Kostova and Wang 2011). The pARE-TI-lucif-
erase reporter in the stably transfected HepG2-ARE-C8 cell line was also induced by
sulforaphane (Saw et al. 2011). Upregulation of the luciferase reporter was observed
in the reporter cell line EpRE(mGST-Ya)-LUX, which is a Hepa1c1c7 cell line that
contains the ARE from the promoter region of the murine gstya gene (Vermeulen
et al. 2009). Sulforaphane was also shown to activate a reporter in which the Neh2
domain of Nrf2 that is responsible for binding to its negative regulator, Kelch-like
ECH-associated protein 1 (Keap1) (Itoh et al. 1999), was fused to firefly luciferase
(Neh2-luciferase) allowing the direct monitoring of the response to inducers based
on the time course of reporter activation (Smirnova et al. 2011).

9.3.3 Cytoprotective Effects of Sulforaphane In Vivo

Induction of cytoprotective enzymes by sulforaphane also occurs in vivo (Table 9.3).
Sulforaphane administered to mice daily, p.o., at a dose of 15 μmol/day, for 5 days,
resulted in induction of NQO1 and GST activities in liver, forestomach, glandular
stomach, small intestine, and lung (Zhang et al. 1992). Induction of both NQO1 and
GST occurred in mammary glands of mice that had been given 4 daily doses of 3 mg
of sulforaphane per animal, p.o. (Gerhauser et al. 1997). In liver, colon, and pancreas
of rats given either 200, 500, or 1000 μmol/kg (Matusheski and Jeffery 2001) or
40 μmol/kg of sulforaphane, p.o. for 5 days, NQO1 and GST activities were also
upregulated (Munday and Munday 2004). Especially high was the magnitude of
induction in bladder (Zhang et al. 2006b; Munday and Munday 2004; Munday et al.
2008). Feeding sulforaphane (3 μmol/g of diet) for 14 days induced the activities of
NQO1 and GST in the small intestine in wild-type mice (McMahon et al. 2001). In
contrast, an identical treatment had no effect in Nrf2-knockout animals (McMahon
et al. 2001). Topical application of sulforaphane to the mouse skin induced the gene
expression of keratins 16 (K16) and 17 (K17) in the basal layer of the epidermis
(Kerns et al. 2007). K17 is homologous and functionally redundant with K14, and
the sulforaphane-dependent induction of K17 was evaluated as a potential strategy
for reducing skin blistering in K14-knockout mice, a model for the human skin
blistering disease epidermolysis bullosa simplex (EBS). Systemic (i.p.) administra-
tion of 5 μmol of sulforaphane to a pregnant mouse every other day in the week
before delivery followed by topical applications of 1 μmol of sulforaphane to the
newborn pups on the day of birth, day 1 and day 3 after birth, restored the skin
integrity in these animals (Kerns et al. 2007). A subsequent study revealed that the
induction of K17 is independent of Nrf2 activity and parallels the decrease in
glutathione levels that occur after topical administration of sulforaphane (Kerns
et al. 2010).
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A pharmacokinetics/pharmacodynamics preclinical study for breast cancer pre-
vention by sulforaphane was conducted in Sprague-Dawley rats (Cornblatt et al.
2007). It was found that orally administered sulforaphane reaches the mammary
gland and increases the levels of cytoprotective enzymes in this tissue. The levels of
dithiocarbamates (sulforaphane and its glutathione-derived conjugates) peaked at 1 h
after oral administration of 150 μmol sulforaphane, reaching concentrations of
60 μM and 18.8 pmol/mg tissue in plasma and mammary gland, respectively.
After 1 h, the plasma concentration of dithiocarbamates declined rapidly and
exhibited a minor second peak of 22 μM at 12 h. The mRNA levels for NQO1 in
the mammary gland were significantly induced as early as 2 h after dosing, and
maximally elevated at 12 h. The NQO1 enzymatic activity in the mammary gland
was also increased, peaking at 24 h after dosing. A biphasic pattern of HO-1
transcript induction was observed, with an initial peak at 2 h followed by a second
peak at 12 h, indicating a more complex mode of regulation.

Microarray analyses in cells and tissues isolated from mice, rats and humans have
further confirmed and expanded the list of transcriptional targets of sulforaphane
(Agyeman et al. 2012; Thimmulappa et al. 2002; Hu et al. 2004, 2006a; Traka et al.
2005, 2008). The most prominent changes are in genes encoding proteins that are
involved in xenobiotic metabolism, glutathione homeostasis, carbohydrate metabo-
lism, and NADH/NADPH regeneration, and are thus tightly linked to cellular
defense mechanisms, inhibition of proliferation, and induction of differentiation.
The multitude of effects of sulforaphane on such fundamental cellular processes has
led to numerous investigations evaluating the ability of this isothiocyanate to protect
against the development of chronic degenerative diseases. Indeed, protection by
sulforaphane has been demonstrated in animal models of carcinogenesis (Zhang
et al. 1994; Chung et al. 2000; Fahey et al. 2002; Conaway et al. 2005; Kuroiwa et al.
2006; Myzak et al. 2006; Hu et al. 2006b; Gills et al. 2006; Xu et al. 2006; Singh
et al. 2009), cardiovascular disease (Piao et al. 2010), diabetes (Zheng et al. 2011;
Negi et al. 2011), neurotoxicity (Innamorato et al. 2008; Toyama et al. 2011),
neurodegeneration (Kong et al. 2007; Rojo et al. 2010; Innamorato et al. 2010;
Jazwa et al. 2011), and neuronal tissue injury (Tanito et al. 2005; Zhao et al. 2005,
2007a, b; Dash et al. 2009; Hong et al. 2010; Ping et al. 2010; Chen et al. 2011; Mao
et al. 2011; Wang et al. 2012a). Notably, all of these disease models have both
oxidative stress and inflammatory components underlying their pathogenesis. The
protective effects of sulforaphane in animal models are being reflected in multiple
human studies, in which various broccoli preparations or dietary supplements have
been used as delivery vehicles for sulforaphane. The published studies have been
summarized in a recent review (Dinkova-Kostova et al. 2017), and there are
20 ongoing clinical trials. In addition, a stabilized version of suforaphane encapsu-
lated in cyclodextrin (SFX-01) is currently in two clinical trials, in patients with
subarachnoid haemorrhage (NCT02614742) and metastatic breast cancer
(NCT02970682) (Cuadrado et al. 2019).
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9.3.4 Long Lasting Indirect Antioxidant Properties Via
Induction of Cytoprotective Enzymes

The ability to upregulate the expression of a plethora of cytoprotective genes and to
inhibit pro-inflammatory responses makes sulforaphane a particularly efficient,
albeit indirect antioxidant. The “ultimate antioxidants,” namely, the cytoprotective
enzymes, act catalytically, are not consumed in the course of their antioxidant
functions, have relatively long (usually several days) half-lives, and catalyze a
wide variety of chemical reactions, such that their concerted actions protect cells
and organisms and allows their adaptation to conditions of stress. A study using
human adult retinal pigment epithelial cells (ARPE-19) as a model demonstrated that
induction of cytoprotective enzymes by sulforaphane is a powerful strategy for
enhancing the cellular antioxidant defense (Gao et al. 2001). Furthermore, such
intervention provides efficient protection against chemically-induced oxidative
stress produced by oxidants of several different types, such as the redox cycling
agent menadione, the water-soluble peroxide tert-butyl hydroperoxide, the
genotoxic alkenal 4-hydroxynonenal, and the highly damaging product of the
reaction of superoxide with nitric oxide, peroxynitrite. Unlike the short-lived effects
of direct antioxidants, protection against menadione toxicity at the end of a 24-h
treatment with sulforaphane is prolonged and maintained for several days. Impor-
tantly, the duration of sulforaphane-mediated resistance to menadione paralleled the
time period of increased cytoprotective enzyme activities: NQO1, glucose-6-phos-
phate dehydrogenase, and glutathione reductase in cells treated with sulforaphane
continued to rise for 48 h after removal of sulforaphane from the medium and
remained high during the ensuing 48–72 h. The levels of GSH after 24-h exposure
to sulforaphane were increased by 50%, remained at this level for another 24 h, and
then declined to control cell levels in the subsequent 96 h. In primary cultures of rat
cortical astrocytes, sulforaphane exposure for 4 h induced the levels of mRNA for
NQO1 and HO-1 (Bergstrom et al. 2011). These levels remained high for 24 h, and
the corresponding protein levels were increased for more than 48 h. The long-lasting
effects of sulforaphane treatment on induction of NQO1 were also observed in
several different human prostate cancer cell lines (Jiang et al. 2003; Brooks and
Paton 1999; Brooks et al. 2001). Transcriptional induction by sulforaphane was
transient: it was evident at 4 h after exposure, reached a peak at 8 h, and returned to
basal levels by 12 h. However, the enzyme activity remained elevated for up to
5 days after treatment. The levels of glutathione and glutathione-related enzymes,
such as GCLC and GSTs, were also upregulated (Brooks and Paton 1999). Thus,
even a transient exposure to sulforaphane causes an elevation of endogenous anti-
oxidant systems, which by virtue of their long half-lives ultimately result in long-
lasting protection. Moreover, protection against oxidative stress is quantitatively
related to the indirect antioxidant action of sulforaphane, which is the result from
induction of cytoprotective enzymes.
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9.4 Phenethyl Isothiocyanate, Benzyl Isothiocyanate, Allyl
Isothiocyanate

Phenethyl isothiocyanate (PEITC), benzyl isothiocyanate (BITC) and allyl isothio-
cyanate (AITC) occurring commonly in the human diet (Table 9.4) have been widely
investigated with respect to their cancer chemopreventive properties.

AITC, also known as mustard oil, is responsible for the pungent taste of several
cruciferous vegetables. This is due to its effects on the transient receptor potential A1
channel in sensory neurons and plays a role in plant defense against herbivores
(Zhang 2010). Moreover AITC, as well as sulforaphane, PEITC and BITC, manifest
antimicrobial activity against a wide spectrum of pathogens (Zhang 2010; Fahey
et al. 2002; Navarro et al. 2011; Haristoy et al. 2005; Johansson et al. 2008; Yanaka
et al. 2009). Many studies have presented AITC, sulforaphane, PEITC and BITC as
promising cancer preventive phytochemicals, with anti-cancer activity in both can-
cer cells and animal models (Zhang 2010; Navarro et al. 2011). Many examples of
comparison studies performed with use of aliphatic AITC and sulforaphane and
aromatic PEITC and BITC have enabled to draw conclusions about their structure-
activity relationships amongst compounds belonging to the ITC family (Prashar
et al. 2012). Other ITCs, like sulforaphane, are able to induce cytoprotective
enzymes responsible for detoxification and augmentation of anti-oxidant defense,
as outlined above. The potency of ITCs to induce apoptosis or inhibit cell cycle
progression of cancer cells is determined by their ability to affect various molecular
targets involved in regulating these processes (Fig. 9.4). Furthermore, these ITCs are
also able to modulate these processes through their interaction with unique molec-
ular targets dictated by their structure.

Table 9.4 Structure, chemical names and dietary sources of selected isothiocyanates (Cheung and
Kong 2010; Prashar et al. 2012)

Structure
Chemical name/
Glucosinolate precursor Origin

2-Phenethyl-ITC
(PEITC)
2-Isothiocyanatoethyl
benzene/Gluconasturtiin

Watercress, radishes, turnips

Benzyl-ITC (BITC)
Isothiocyanatomethyl
benzene/Glucotropaeolin

Lepidium cress, cabbage, papaya

Allyl ITC (AITC)
3-Isothiocyanatoprop-1-
ene/Sinigrin

Mustards, horseradish, wasabi, cabbage,
brussels sprouts, kale, cauliflower
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Fig. 9.4 Schematic representation of the signaling pathways contributing to ITC-induced cytotox-
icity and indirect antioxidant effects (details are described in the text). ITCs isothiocyanates, GSH
glutathione, Top2 DNA topisomerase II, Keap1 Kelch-like ECH-associated protein 1, Nrf2 NF-E2
p45-related factor 2, Maf small musculoaponeurotic fibrosarcoma, ARE/EpRE antioxidant/electro-
phile response element, γGCL γ-glutamate-cysteine ligase, GST glutathione S-transferase, HO-1
heme oxygenase 1, NQO1 NAD(P)H:quinone oxidoreductase 1, Bcl-2 B-cell lymphoma 2, Bcl-xL
B-cell lymphoma-extra large, Bak Bcl-2 homologous antagonist killer, Bax Bcl-2–associated X
protein, SOD superoxide dismutase, Prx3 peroxiredoxin 3, ROS reactive oxygen species, Cyt c
cytochrome c, Apaf-1 apoptotic protease activating factor 1, Casp3,8,9 caspase-3,-8,-9, DR death
receptor, JNK c-Jun N-terminal kinase, Cdk1 cyclin-dependent kinase 1, Cdc25C cell division cycle
25 homolog C, Chk1 checkpoint kinase 1
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9.4.1 Cellular Accumulation of ITCs and Depletion
of Glutathione (GSH)

ITCs upon crossing the cell membrane accumulate in the cytosol as dithiocarbamates
due to their rapid reaction with molecules containing thiol (-SH) group(s), or other
nucleophilic moieties. As shown in Fig. 9.4, the main targets of ITCs for
thiocarbamoylation are GSH and various cellular proteins. Intracellular conditions,
such as high concentration of GSH (1–10 mM) and abundance of GSTs catalyzing
the conjugation of GSH to the carbon of the –N¼C¼S moiety contribute to a rapid
and highly efficient accumulation of ITCs. The intracellular concentration of ITCs
can exceed the extracellular one over 100–200-fold within 1 to 3 h of exposure
(Zhang 2000, 2001). Total intracellular BITC and PEITC accumulation levels were
1.04 and 0.66 mM, respectively, when UM-UC-3 cells were exposed to each ITC at
7.5 μM for 1 h (Tang and Zhang 2005). Then, as a means of detoxification,
ITC-glutathione (ITC-SG) conjugates are transported out of the cell. Since the
reaction between GSH and ITCs is reversible, the breakage of ITC-SG conjugates
extracellularly promotes accumulation of ITCs and depletion of intracellular GSH
exploited by the detoxification of ITCs re-entering cells. Measurements of GSH level
in Jurkat T lymphoma cells upon 20 and 60 min of stimulation with 15 μM
sulforaphane or PEITC showed a prominent reduction of GSH levels of around
60 and 30% of the control, respectively (Brown et al. 2008). Depletion of GSH,
widely recognized as the main cellular redox buffer, can disrupt redox homeostasis
and induce signaling pathways aimed at restoring the redox balance. Nevertheless,
the cell survival/cell death fate is context dependent, and is contingent on drug
concentration, duration of treatment, cell type (origin, normal vs. cancer cells)
(Fig. 9.4) (Nakamura and Miyoshi 2010).

9.4.2 Apoptosis Induction by ITCs

One mechanism by which ITCs are able to wield their anti-cancer prowess is through
the activation of apoptotic pathways. ITCs have been shown to suppress prolifera-
tion of different types of cancer cells (see Tables 9.5 and 9.6 for overview). Induction
of apoptosis and cell cycle arrest by ITCs has been attributed to their pro-oxidative
activity mediated via triggering mitochondrial signaling, as well as their electrophilic
nature which causes the thiocarbamoylation of proteins of which the proper func-
tioning is necessary for viability (Fig. 9.4). Multiple reports in the existing literature
have shown that ITCs are potent inducers of apoptosis in a time- and dose-dependent
manner. Interestingly, differences in molecular targets, mechanisms, and potency of
apoptosis induction by ITCs have been identified. This underlines the importance of
the side chain, unique to different compounds bearing an isothiocyanate moiety.
Exemplary, the effectiveness of six different ITCs in dissipation of the mitochondrial
membrane potential and apoptosis induction in leukemia cells (HL60) followed the
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Table 9.6 Cytotoxicity attributed to electrophilic activities of ITCs

Organ Cell line ITCs conc.
Treatment
time Effect References

Breast MCF10A-
Ras

BITC, PEITC,
Sulforaphane

4 days # Viable cells
IC50 ¼ 3.2 � 0.7;
3.4 � 0.5; 10 � 1.3

Lin et al.
(2011)

10 μM PEITC 6 h " DNA damage

0.1 mM BITC,
1 mM BITC

1 and
5 min,
30 min

In vitro covalent bind-
ing to DNA topoisom-
erase II

Lung A549 1–100 μM
BITC, PEITC,
Sulforaphane

24 h # Viable cells
IC50 ¼ 13.8; 18.3; 43

Mi et al.
(2008)

10 μM BITC or
PEITC, 30 μM
SFN

4–24 h G2/M-phase cell cycle
arrest

24 h Accumulation of
mitotic cells

10 or 20 μM
BITC, PEITC,
Sulforaphane

24,
48, 72 h

Apoptosis induction
(sub-G1 fraction)

4–24 h Caspase-3 activity

20 μM
14C-PEITC,
14C-SFN;

1 h α- and β-tubulin
binding

30 μM BITC,
PEITC, Sulfo-
raphane
(in vitro)

Not stated Tubulin polymerization
inhibition

5 μM BITC or
PEITC

0.5 or 1 h Microtubule network
disruption

20 μM 1 h Covalent binding to
cysteine residues in
tubulin

Myeloma
Ovary
Lung
Prostate
Colon
Breast

U266
RPMI-
8226
HeLa
A549
PC-3
HT-29
MCF-7

10, 20, 30 μM
BITC or PEITC

2–24 h Inhibition of
proteosome (26S and
20S) activity by direct
binding

Mi et al.
(2011)

Myeloma U266 10 or 20 μM
BITC, PEITC,
SFN

1 h # GSH Mi et al.
(2011)

10 μM BITC or
PEITC

24 h G2/M-phase cell cycle
arrest

10 or 20 μM
BITC, PEITC,
SFN

24 h Apoptosis induction
(sub-G1 fraction)

(continued)
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order: BITC ¼ PEITC > ERN (erucin) ¼ IBN (iberin) > AITC > sulforaphane
(Jakubikova et al. 2005b). A 24-h exposure of human breast cancer cells to as little as
2.5 μM PEITC and BITC resulted in about 70% and 30% decrease in cell viability,
respectively for MDA-MB-231 and MCF-7 cell lines (Xiao et al. 2006). The
increase in each of the compound’s concentration to 20 μM caused severe elevation
in the number of dead cells (above 90%) in the case of PEITC and complete cell
death with BITC. Sulforaphane, also used in this study, showed a relatively lower
potential in inducing cell death. On the basis of analysis of DNA fragmentation,
chromatin condensation, and percentage of cells in the sub-G1 fraction, apoptosis
induction was identified as a mechanism responsible for reduction of the number of
viable cells (Xiao et al. 2006). Treatment of the same cell lines with low concentra-
tions of BITC over 2–24 h resulted in an increase in the levels of the pro-apoptotic
proteins Bax and Bak and down-regulation of the anti-apoptotic proteins Bcl-2 and
Bcl-xL (Xiao et al. 2006). Interestingly, RNA interference of Bax and Bak conferred
significant protection against PEITC-induced apoptosis (Xiao et al. 2010). Bcl-2
family members are known to influence the integrity of the mitochondrial mem-
brane: the anti-apoptotic proteins are normally located at the mitochondrial mem-
brane to protect its stability; the pro-apoptotic proteins translocate from the cytosol
to the mitochondrial membrane in order to destabilize it in response to apoptotic
stimuli. The results from a study performed in human bladder cancer cells
(UM-UC3) showed ITC-mediated phosphorylation of Bcl-2, mitochondrial translo-
cation of Bak, and disruption of the association of Bcl-xL with both Bak and Bax in
the mitochondrial membrane, indicating that ITC-induced mitochondrial damage
results at least in part from modulation of selected Bcl-2 family members (Tang and
Zhang 2005). This effect was further complemented in breast cancer cells through
the presence of the loss of mitochondrial membrane potential, cytochrome c release
and finally activation of caspase-9, -3 and -8. Pre-treatment of cells with specific
inhibitors for caspase-9 or -8 was associated with decreased cleavage of pro-caspase-
3 and decreased DNA fragmentation, pointing at the involvement of both, the
mitochondrial pathway (mediated by caspase-9) and the death receptor pathway

Table 9.6 (continued)

Organ Cell line ITCs conc.
Treatment
time Effect References

5, 10, 15 μM
BITC

24 h Apoptosis induction
(PARP cleavage)

2.5–40 μM
BITC

24, 48 h # viable cells

10–40 μM
BITC, PEITC,
SFN

4 h α- and β-tubulin aggre-
gation and depletion

Ovary HeLa 10 μM BITC 20 h Apoptosis induction
(sub-G1 fraction)

Mi et al.
(2009)

10 μM BITC 20 h G2/M-phase cell cycle
arrest
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(mediated by caspase-8) in apoptosis induction (Xiao et al. 2006). The capacity of
ITCs to induce apoptosis is also observed in various cell culture (Pappa et al. 2006,
2007a, b) as well as in vivo systems where researchers have linked this ability to the
antineoplastic effects seen in their studies (Yeh et al. 2016a, b; Herz et al. 2014;
Wang et al. 2014; Stan et al. 2014; Ni et al. 2013). For example, both BITC (Huang
et al. 2018) and PEITC (Chou et al. 2018) have been found to inhibit the growth of
xenograft tumors of glioblastoma multiforme in mice, in part, due to their capability
to induce apoptosis in these cells through the down regulation of several anti-
apoptotic proteins. In a highly metastatic human non-small cell lung cancer cell
line L9981, BITC and PEITC have shown to potently induce apoptosis as well as
cause the upregulation of the MAPK signaling pathway (a signaling pathway
implicated in apoptosis induction), and that their effects were abrogated by the
pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) (Yan et al. 2011).
Also, using the Affymetrix GeneChip microarray, treatment of these cells with
10 μM BITC for 24 h exhibited an upregulation of 77 and 52 genes involved in
apoptosis and cell cycle progression respectively (Yan et al. 2011).

Another molecular mechanism by which these ITCs induce apoptosis could be
through the modulation of the short form Recepteur d’Origine Nantais (sfRON), a
receptor tyrosine kinase. Sehrawat and Singh reported that MCF7 cells
overexpressing sfRON (MCF7/sfRON) treated with 5 μM BITC for 24 h had an
approximately two-fold higher apoptotic-induction compared to the wild-type cells
(Sehrawat and Singh 2016). MCF7/sfRON and MDA-MB-361/sfRON cells treated
with 5 μMBITC for 6 h exhibited an increase in activated apoptotic proteins Bak and
Bax compared to their respective wild-type counterparts (Sehrawat and Singh 2016).
Also, it is interesting to note that MCF7/sfRON cells had increased basal ROS
production and BITC-induced ROS production in these cells was significantly
attenuated compared to their wild-type counterparts (Sehrawat and Singh 2016).

The combinatorial effects of ITCs in inducing cancer cell death has also been
studied. It has been shown that in the non-small cell lung cancer cell line A549, the
synergistic effects of AITC and sulforaphane led to a more extensive apoptosis
induction compared to when the ITCs were singly administered (Rakariyatham et al.
2019). It will be interesting to evaluate the synergistic potential of ITCs for their
antineoplastic potential in animal models.

Although there is a large body of evidence linking ITCs to apoptosis induction, it
is noteworthy that there has been an instance where they have been implicated in the
inhibition of apoptosis (Ho et al. 2012). In particular, in the left ventricle of the heart
of a murine acquired immune deficiency syndrome (AIDS) model, Ho and col-
leagues found that sulforaphane, PEITC and BITC inhibit apoptosis by increasing
the Bcl-2/Bax ratio when compared to the vehicle treated mice (Ho et al. 2012) and
that mice treated with the ITCs survived at least 25 days longer than the control
group.
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9.4.3 The Role of ROS Induction in ITC-Mediated
Cytotoxicity

Pro-oxidative properties of BITC, as potentially important for triggering apoptosis,
were investigated by use of dihydroethidium (DHE) bromide (hydroethidine) and
20,70-dichlorodihydrofluorescein diacetate (H2DCF-DA), fluorescent probes
designed to indicate superoxide anion radicals and more general ROS levels,
respectively (Table 9.5). MDA-MB-231 cells treated with 2.5 μM of BITC for 2 h
were loaded with the dyes. Subsequent measurements of oxidized fluorescent
products ethidium bromide and 20,70-dichlorofluorescein (DCF) fluorescence indi-
cated increased signals for BITC-treated samples compared to a vehicle control.
Moreover, apoptosis induction by BITC was significantly attenuated in the presence
of combined superoxide dismutase and catalase mimetic EUK134, supporting the
notion that ROS generation is critical for triggering the death pathway (Xiao et al.
2006). Further studies by the same authors demonstrated that increased ROS levels
by BITC treatment were due to inhibition of Complex III of the mitochondrial
respiratory chain (Xiao et al. 2008). BITC-induced ROS production and apoptosis
were significantly inhibited by overexpression of the anti-oxidant enzymes catalase
and Cu,Zn-superoxide dismutase and by pharmacological inhibition of the mito-
chondrial respiratory chain (Xiao et al. 2008). In accordance, the mitochondrial
DNA-deficient Rho-0 variant of MDA-MB-231 cells was almost completely resis-
tant to BITC-stimulated ROS generation and apoptosis induction (Xiao et al. 2008).
Treatment with BITC caused activation of c-Jun N-terminal kinase (JNK) and the
mitogen-activated protein kinase p38 (Xiao et al. 2008); the latter is s also observed
upon treatment with PEITC (Dayalan Naidu et al. 2016). Pharmacological inhibition
of both JNK and p38 ensured partial protection against BITC-induced apoptosis
(Xiao et al. 2008). Concerning the cascade of events triggered by BITC, it can be
concluded from this study that ROS production is up-stream of JNK and p38
activation, and such activation is up-stream of Bax conformational changes.

Hence, overexpression of catalase abolished activation of JNK and p38 in BITC
treated cells, and BITC-mediated activation of Bax was suppressed by ectopic
expression of a catalytically inactive mutant of JNKK2, which is a JNK specific
kinase (Xiao et al. 2008). The importance of JNK, p38 and related signaling in
mediating cytotoxic effects of sulforaphane and PEITC was examined in the MM.1S
myeloma cell line (Jakubikova et al. 2011). Multiplex analysis of phosphorylation of
diverse components of signaling cascades revealed transient changes in JNK, c-Jun,
MEK1, p38, extracellular signal-regulated kinase (ERK)1/2, Akt, GSK3α/β and p53
activation in sulforaphane- and PEITC-treated cells, which may result from
ITC-induced oxidative stress or potential targeting of phosphatases (Jakubikova
et al. 2011). Studies done in human prostate cancer cells (LNCaP and PC-3) showed
similarly that PEITC-induced cell death initiated by production of ROS (measured
here by electron paramagnetic resonance spectroscopy: EPR) correlated with inhi-
bition of Complex III activity, suppression of oxidative phosphorylation, and ATP
depletion (Xiao et al. 2010). Pre-treatment of cells with 4 mM N-acetyl cysteine
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(NAC) for 2 h, followed by further PEITC/NAC co-treatment, caused a decrease of
ROS production and readouts for apoptotic markers (Xiao et al. 2010).

Nevertheless, a study by Mi et al. (2010) with use of [14C]PEITC and [14C]
sulforaphane demonstrated that NAC pretreatment significantly reduced ITC cellular
uptake by conjugating with ITCs extracellularly in the cell culture medium,
suggesting that reduced uptake of ITCs, rather than the antioxidant activity of
NAC itself, is responsible for the diminished downstream apoptotic effect
(Mi et al. 2010). Therefore, other approaches, such as Rho-0 cells characterized by
non-functional mitochondria or up-/down-regulation of antioxidant enzymes level
would be more reliable to demonstrate the importance of ROS signaling induced by
ITCs for downstream effects. Indeed, counterparts of LNCaP and PC-3 cells with
overexpressed Mn-SOD or Cu,Zn-SOD, or unfunctional respiratory chain (Rho-0
cells), were more resistant to PEITC-mediated ROS generation and subsequent
apoptosis induction (Xiao et al. 2010).

It is recognized now that the superoxide anion radical production by Complex III
of the mitochondrial respiratory chain is directed towards both matrix and
intermembrane space (Han et al. 2003). This would clarify why overexpression of
SOD localized to the mitochondrial matrix (Mn-SOD) and SOD localized to the
mitochondrial intermembrane space and cytosol (Cu,Zn-SOD) could decrease
PEITC-mediated ROS generation (Xiao et al. 2010). On the other hand, there have
been some studies reporting ITC-stimulated ROS-independent cell death (Wiczk
et al. 2012; Hsu et al. 2013). Measuring [3H]-leucine incorporation, Wiczk et al.
observed that sulforaphane dose-dependently (10, 20 and 40 μM) reduced protein
synthesis in PC-3 cells by 80, 50 and 20% when compared to the vehicle-treated
cells (Wiczk et al. 2012). They further found that SFN-induced protein synthesis
blockade occurred in a ROS-independent manner, and that cell death induced by
SFN was due to the decrease in the levels of the short-lived protein survivin (Wiczk
et al. 2012).

ROS accumulation activates the unfolded protein response (UPR), which causes
ER stress, which if not alleviated, leads to activation of cell death pathways. In
ovarian cancer cell lines SKOV3 and PA-1, exposure to 5 μMPEITC for 48 h caused
cellular ROS accumulation, subsequent UPR activation and apoptotic cell death.
These effects observed upon PEITC exposure were abrogated in the presence of the
ROS scavenger NAC, signifying that PEITC-induced ROS is crucial for the
UPR-induced apoptosis (Hong et al. 2015).

Studies by Brown et al. brought interesting insights into the exact topology of
PEITC-mediated ROS generation (Brown et al. 2008). There exist several enzymes
dedicated to remove intracellular hydrogen peroxide (H2O2), a product of superox-
ide dismutation by SOD. One type is represented by peroxiredoxins (Prxs) that in
course of peroxide decomposition by specific cysteine residues generate a disulfide-
linked intermolecular dimer. Hence, their oxidation can be analyzed by western
blotting detection of a band shift from monomer (reduced Prx) to dimer (oxidized
Prx). Interestingly, oxidation of mitochondrial peroxiredoxin 3 (Prx3) was detected
as early as 5 min after exposure of Jurkat T lymphoma cells to PEITC. Time-
(5–120 min with 15 μM) and dose- (2.5–60 μM for 60 min) dependent analyses
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revealed that such oxidation is specific to the mitochondrial isoform, with cytoplas-
mic Prx1 and Prx2 remaining in their reduced forms (Brown et al. 2008). Treatment
of the cells with sulforaphane under similar conditions had no influence on Prx3
dimerization. Moreover, the ability to disturb mitochondrial redox homeostasis by
selected ITCs was correlated to their pro-apoptotic activity (from the most to least
potent: PEITC, BITC, phenylhexyl ITC, phenylbutyl ITC, phenylpropyl ITC, AITC,
sulforaphane) (Brown et al. 2008). In addition to regulation of Prx oxidation, ITCs
are able to modulate cellular redox conditions by affecting the activity of other anti-
oxidant enzymes, including thioredoxin reductase (Brown et al. 2008, 2010; Heiss
and Gerhauser 2005), glutathione peroxidase (Trachootham et al. 2006), and gluta-
thione reductase (Brown et al. 2008).

9.4.4 ITC-Related Electrophilicity and Apoptosis Induction

Cysteine residues present in diverse classes of proteins often have regulatory roles.
They can be subjected to modifications such as oxidation, nitrosylation or
glutathionylation, and also have the ability to bind to metals contained within
proteins. Such cysteine modifications on proteins may have different biological
consequences. Not all cysteine residues are equally reactive. Cysteine reactivity to
electrophiles greatly varies across different proteins and also within the same
protein. The protonation state of the cysteine residue determines the extent of its
reactivity and nucleophilicity that is indicated by its pKa value, which in turn is
affected by the proximate amino acids. Free cysteine residues usually have a pKa
value of 8.6 whereas a reactive cysteine has a pKa value in the neutral or even acidic
range, and thus typically exists in a thiolate form (Roos et al. 2013).

Keap1, the main negative regulator of transcription factor Nrf2 (Itoh et al. 1999), is
equipped with highly reactive cysteines that serve as sensors for electrophiles
(Dinkova-Kostova et al. 2002; McMahon et al. 2010; Saito et al. 2016), including
ITCs, leading to Nrf2 stabilization and enhanced Nrf2-target gene expression
(Fig. 9.4). Cysteine 151 in Keap1, which is surrounded by a cluster of basic amino
acids (H129, K131, R135, K150, and H154), is the primary sensor for sulforaphane
and PEITC (Zhang and Hannink 2003; Dayalan Naidu et al. 2018). However, at high
concentration of PEITC (7.5 μM for immortalized mouse embryonic fibroblast cells),
Nrf2 stabilization proceeds in the absence of cysteine 151 (Zhang and Hannink 2003;
Dayalan Naidu et al. 2018), indicating that other cysteines are also modified within
Keap1 as well as other proteins. Thus, mass spectrometric analyses have demon-
strated that PEITC directly interacts with two cysteines of purified Prx3 in vitro
(Brown et al. 2008). Also, by use of high-resolution mass spectrometry, it has been
shown in vitro that PEITCmodifies the single cysteine in GSTA1 as well as cysteines
14, 47 and 169 in GSTP1 causing the irreversible inhibition of the catalytic activity of
these enzymes. This observation suggests that PEITC is capable of suppressing its
own metabolism in the cells through its sulfhydryl reactivity (Kumari et al. 2016). It
has been speculated that the inhibition of Complex III by PEITC may be caused by
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covalent modification of critical sulfhydryl groups on subunit(s) of Complex III
driven by the electrophilicity of the isothiocyanate moiety. In this regard, direct
covalent modification of cellular proteins has been suggested to be an important
early event in the induction of apoptosis by ITCs (Mi et al. 2007) (Table 9.6). So far,
several specific protein targets have been identified (Mi et al. 2008, 2009, 2011; Lin
et al. 2011). A study using two-dimensional gel electrophoresis of human lung cancer
A549 cells treated with radiolabeled PEITC and sulforaphane revealed that tubulin
may be an intracellular binding target for ITCs. The potency exerted by selected ITCs
to cause mitotic arrest and apoptosis correlated positively with their ability to disrupt
microtubule polymerization, with the established order of activity: BITC> PEITC>
sulforaphane (IC50 ¼ 13.8 > 18.3 > 43 μM) (Mi et al. 2008). Immunofluorescent
microscopy showed disruption and degradation of the microtubule network in A549
cells treated with 5 μM of BITC or PEITC for 0.5 h and 1 h, respectively, while
treatment with 10 μM sulforaphane over 4 h did not affect cells so potently. In
contrast, exposure of cells to N-methyl phenethylamine, a structural analog of
PEITC lacking the isothiocyanate functionality, did not interfere with tubulin poly-
merization, and consequently did not reduce cell viability (Mi et al. 2008). Addition-
ally, tubulin precipitation was detected in BITC- and PEITC-treated cells, suggesting
that this is a result of structural misfolding caused by ITCs. Further mass spectro-
metric data of tubulin purified from the insoluble fraction revealed that cysteine 347
of α-tubulin was covalently modified by BITC (Mi et al. 2008). The authors con-
cluded that variation in ITCs activity to bind to tubulin and cause apoptosis results
from the differences in their structure, which determines compound hydrophobicity,
size, shape, and electrophilicity, all together influencing binding preferences
(Mi et al. 2008). Exemplarily, the alkyl linkage joining the –N¼C¼S moiety to the
aromatic ring is shorter in BITC then in PEITC. This might explain differences in
covalent interaction between these ITCs and tubulin. Further studies by the same
group demonstrated that ITCs can selectively induce degradation of both α- and
β-tubulin in a variety of human cancer cell lines. Tubulin aggregation was found as
the initial step in its proteasome-dependent degradation, which is triggered by ITC
binding to tubulin and is independent from oxidative stress (Mi et al. 2009).

Other identified protein targets of ITCs are components of the 20S and 26S
proteasomes. Their activities in cancer cells of different tissue origin were signifi-
cantly inhibited by BITC or PEITC binding. This binding was unrelated to either
ROS generation or ITC-induced protein degradation (Mi et al. 2011). Recent
investigations have indicated that ITC-induced apoptosis of oncogene-transformed
cells (MCF-10A-Ras) involved thiol modification of DNA topoisomerase II (Top2).
siRNA-mediated knockdown of Top2α resulted in reduced sensitivity towards ITCs,
showing that the Top2α protein level is important for mediating ITC-induced growth
inhibition, DNA damage and apoptosis. In addition, proteomic analysis revealed that
several cysteine residues on human Top2α were covalently modified by BITC,
possibly contributing to formation of lethal Top2α-DNA covalent adducts (Top2α
cleavage complex) (Lin et al. 2011).

MEK kinase 1 (MEKK1) is a MAP3K that regulates ERK and JNK MAPK
pathways, pro-apoptotic and pro-survival pathways. Cross and colleagues found that
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oxidative stress induced by menadione exposure inhibits the function of MEKK1 via
the glutathionylation of its cysteine residue 1238 which is found in the ATP-binding
domain (Cross and Templeton 2004). In a following study by the same group,
MEKK1 overexpressed in CV-1 cells showed that 1 h exposure to PEITC from
50 μM to 200 μM showed reduction it is catalytic activity when the kinases were
purified from these cells an assayed in an in vitro kinase assay. Importantly, using
purified recombinant full length MEKK1 and the mutant MEKK1 C1238V which
retains its wild-type kinase function whilst resistant to oxidative stimuli, it was
shown that PEITC dose dependently (6.5 μM to 200 μM) caused a loss of kinase
activity in the wild-type MEKK1 and that the mutant MEKK1 C1238V retained its
kinase activity, indicating that C1238 is modified by PEITC thereby inhibiting its
kinase activity (Cross et al. 2007). However, it remains to be seen whether inhibition
of MEKK1 by PEITC affects its pro-apoptotic or its pro-survival activity. The
MEK1/MEKK1/FLT3 inhibitor E6201 dose-dependently induced apoptosis in
acute myeloid leukemia cells, therefore, it is possible that chemical inhibition of
MEKK1 through PEITC may allow it to exert it pro-apoptotic effects.

Under basal conditions, the apoptosis signal-regulating kinase 1 (ASK1), a
mitogen-activated protein kinase kinase kinase (MAP3K), is negatively regulated
by the redox-sensitive protein thioredoxin 1 (Txn1) through direct interaction
(Bishopric and Webster 2002). ASK1, is an upstream regulator of the MAPK family
members p38 and JNK and when activated, signals pro-apoptotic pathways medi-
ated by these kinases (Liu et al. 2000). Mutagenesis studies using purified recombi-
nant proteins reveal that the Txn1 binds to ASK1 through its cysteines C32 and C35,
where the former residue exhibits a relatively higher binding affinity (Kylarova et al.
2016). Oxidation of Txn1 has been implicated in its dissociation from ASK1 and the
subsequent activation of the kinase (Nadeau et al. 2007; Saitoh et al. 1998). It has
been found that in the hepatocellular carcinoma cell line MHCC97H, a 24 h expo-
sure to 20 and 30 μM PEITC caused the reduction in the levels of reduced Txn1 and
increased the levels of oxidized Txn1 in a dose-dependent manner (Zhang et al.
2012). In CV-1 cells expressing full length ASK1, exposure to PEITC does not
affect its kinase activity (Cross et al. 2007). Since oxidation status of Txn1 is
perturbed by PEITC, possibly through its electrophilic nature, it is highly conceiv-
able that apoptosis induced by this isothiocyanate is mediated via ASK1 activation
through the release of Txn1 from the kinase.

9.4.5 Necrosis, Autophagy, and Cell Cycle Arrest Triggered
by ITCs

The cellular processes other than apoptosis triggered by ITCs-initiated oxidative
stress or protein thiocarbamoylation deserve some attention and include induction of
necrosis, autophagy, and cell cycle arrest. Such events triggered by ITCs can
represent the responses interrelated to or distinct from apoptosis induction (Xiao
et al. 2006).
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Effects of sulforaphane and PEITC on induction of apoptosis and necrosis in
myeloma cells (MM.1S) were quantified by flow cytometry upon staining with
annexinV-FITC and PI (propidium iodide). The percentage ratio of apoptotic to
necrotic death was about 70% to 30%, respectively (Jakubikova et al. 2011),
demonstrating a significant contribution of necrosis to the overall mechanisms
responsible for a drop of cell survival. The study performed in leukemia cells
(HL60) treated with different ITCs for 6 h revealed an over 50% contribution of
necrotic cells to the total pool of dead cells. This phenomenon was especially visible
when higher concentrations of ITCs were used (Jakubikova et al. 2005b). Consis-
tently, apoptosis was induced when rat liver cells were treated with 20 μMBITC, but
increasing its concentration to 50 μM caused necrosis (Nakamura et al. 2002).

ROS resulting from the disturbance of the mitochondrial electron transport chain
or catalase degradation can induce autophagy (Azad et al. 2009). Autophagy, a self-
digestion process that degrades intracellular structures in response to stress caused
by nutrient starvation, mitochondrial toxins, hypoxia, or ROS, can be involved in
both cell survival and cell death. Autophagic degradation of cellular material
generates amino acids and fatty acids, which can be used for protein synthesis and
ATP generation during stressful conditions such as starvation. Autophagy also
removes protein aggregates (which can trigger apoptosis) and damaged mitochon-
dria (as a source of apoptotic proteins and toxic ROS). However, prolonged
autophagy can lead to cell death through excessive self-digestion or activation of
apoptosis (Azad et al. 2009; Kondo et al. 2005).

Xiao et al. investigated the induction of autophagy as an additional mechanism
downstream of ROS generation by PEITC (Xiao et al. 2010). PEITC-initiated
autophagy was partially dependent on ROS production in prostate LNCaP and
PC-3 cancer cells, since their Rho-0 counterparts were less affected when autophagy
markers were analyzed. Xiao et al. suggested that autophagy may represent a
clearing mechanism for mitochondria involved in ROS production. Nevertheless, a
possible influence of autophagy on apoptosis induction in this study could not be
excluded and remains to be elucidated (Xiao et al. 2010). In triple negative breast
cancer cell lines, MDA-MB-231, MDA-MB-468 and BT549, by the use of fluores-
cence microscopy techniques, it was reported that sulforaphane induced autophagy
by downregulating HDAC6-mediated PTEN activation (Yang et al. 2018), where the
latter is an important driver of autophagy (Ueno et al. 2008). BITC induced
autophagy in the human colorectal cancer cells HCT-116 where increases in the
lipidated form of LC3B and p62 which are proteins required for the formation of
autophagic vesicles were observed (Liu et al. 2017). A similar effect was observed
with the use of sulforaphane in the U2OS osteosarcoma cells (Olagnier et al. 2017)
and PEITC in a prostate cancer mouse model (Powolny et al. 2011).

A common phenomenon caused by ITCs in different cancer cell lines is the
inhibition of cell cycle progression. Most reports describe ITC-induced cell cycle
arrest at the G2-M phase. Statistically significant enrichment of the G2-M fraction of
MDA-MB-231 cells treated with 2.5 μM BITC was evident as early as 3 h after
treatment and this effect was sustained, correlating with increased growth inhibition
(Xiao et al. 2006). Studies by Jakubikova and colleagues showed that AITC (10 μM,
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24 h) was the most potent inducer of G2-M arrest among the six tested ITCs where
52% of the HL60 cells accumulated at the G2-M phase (Jakubikova et al. 2005b).
PEITC- and sulforaphane-induced G2-M cell cycle arrest was accompanied by
phosphorylation of histone H3 at serine 10 (a mitotic marker) in human myeloma
cell lines (Jakubikova et al. 2011). Immunobloting analysis revealed that BITC-
mediated cell cycle arrest was associated with a decrease in levels of proteins
involved in regulation of G2-M transition, including cyclin B1, cyclin-dependent
kinase 1 (Cdk1), and cell division cycle 25C (Cdc25C) (Fig. 9.4) (Xiao et al. 2006).
Expression patterns of cell cycle-related proteins were studied also in myeloma cells
(MM.1S) and revealed a decrease of cyclin B1, p-Cdc2 and Cdc25C (Jakubikova
et al. 2011). Similarly, the BITC- and PEITC-induced G2-M phase arrest of human
osteosarcoma U2OS cells was due to a reduction in cyclin A and B1 levels,
accompanied by an increase of Chk1 and p53 levels, events that lead to G2-M arrest
(Wu et al. 2011). Along these lines, it has been demonstrated that treatment of
glioma cells with AITC markedly reduced Cdk1/cyclin B activity and protein levels
(Chen et al. 2010). Interestingly, experiments using phase-specific synchronized
cells demonstrated that G2-M phase-arrested cells are more sensitive to undergo
apoptotic stimulation by BITC than cells in other phases (Miyoshi et al. 2004). A
recent study conducted by Mantso and colleagues found that using low concentra-
tions of sulforaphane, BITC and PEITC (5 μM) in the human melanoma cell line
A375 for 48 h with a replenishment of cell growth media with the compounds after
24 h of exposure showed that these cells, in agreement with other independent
reports in the literature, were arrested at the G2-M phase (Mantso et al. 2019).
BITC caused the highest proportion of A375 cells to arrest at G2-M followed by
sulforaphane and PEITC (Mantso et al. 2019). In this study, all three ITCs induced
p21, p27, cyclin D1, cyclin D3, CDK2 and p53 phosphoserine 15 and caused a
reduction in the cyclin dependent kinases (CDK) 4 and 6, where the levels of all of
these proteins when perturbed cause cell cycle arrest (Mantso et al. 2019).

9.4.6 ITC-Mediated Selective Killing of Transformed
and Cancer Cells

It is of great importance to address the question of whether normal cells are sensitive
to ITC-induced oxidative and/or electrophilic stress and the following signals
leading to cell death. Studies performed by Xiao et al. indicated that normal
mammary epithelial cell lines (MCF-10A or HMEC) were significantly more resis-
tant to growth arrest and apoptosis induction by BITC compared to breast cancer cell
lines (MDA-MB-231 and MCF-7) (Xiao et al. 2006, 2008). Similarly, investigations
done in human prostate cancer cell lines (LNCaP and PC-3) and their representative
normal prostate epithelial cells (PrEC) revealed that ROS generation by PEITC is
more harmful to cancer cells than to normal cells (Xiao et al. 2010). These results
suggest that ITCs may selectively target cancer cells but spare normal breast or
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prostate epithelium, which is a highly desirable property of potential anticancer
agents (Xiao et al. 2006, 2010).

In ovarian cancer cell lines SKOV3 and PA-1, exposure to PEITC induced cell
death, however, in the same study, this effect of PEITC was not observed in normal
ovarian epithelial cells (Hong et al. 2015). Similarly, in human laryngeal carcinoma
Hep-2 cells, exposure to a maximum of 10 μM PEITC exerted its anti-cancer
properties by causing cell cycle arrest at G2-M, inhibiting cell proliferation and
inducing apoptosis, and these effects were not observed in the normal human
bronchial epithelial cells 16HBE. This finding shows the sensitivity of the Hep-2
cells to PEITC compared to the normal cells (Dai et al. 2016). Furthermore, findings
from this study provide a therapeutic strategy where a safe range (up to 10 μM
in vitro) of administration of PEITC will confer minimal toxicity to normal cells and
at the same time has the ability to exert its antineoplastic effects on cancer cells (Dai
et al. 2016).

Trachootham et al. developed an interesting model, consisting of immortalized
ovarian epithelial cells (T72) and their H-RasV12 transformed counterparts (T72Ras),
to test the concept that increased ROS generation associated with oncogenic trans-
formation may serve as a biochemical basis to selectively kill cancer cells using
agents that cause further oxidative stress (Trachootham et al. 2006). Indeed, oxida-
tive stress facilitated by exposure to PEITC was significantly more pronounced in
T72Ras cells comparing to parental T72 cells, corresponding with a lowered survival
of transformed cells in response to treatment (10 days treatment: IC50¼ 0.49� 0.1μM
for T72Ras vs. IC50 ¼ 1.95 � 0.1 μM for T72) (Trachootham et al. 2006). The
selective killing of Ras-transformed cells by PEITC was attributed to ROS-mediated
damage of mitochondria. PEITC was also proved to be effective in killing naturally
occurring human ovarian cancer cells (SKOV3, A2008, HEY) and exhibited signif-
icant therapeutic activity in vivo by prolonging survival of mice bearing
Ras-transformed ovarian cancer cells (Trachootham et al. 2006). Similar
pro-survival effects combined with decreased tumor volume were achieved with
sulforaphane and PEITC in a myeloma xenograft mouse model (Jakubikova et al.
2011). As important factor for therapeutic applications, and shown in later studies,
ITCs concentrations required to produce statistically significant inhibition of cancer
cell growth may be achievable in vivo.

9.5 Summary

Isothiocyanates are promising multitarget cancer preventive agents. They exert
health promoting effects mainly through induction of cytoprotective enzymes or
selective toxicity towards cancer cells, processes critical for decreasing the risk of
cancer onset and retardation or inhibition of tumor growth, respectively. Various
investigations performed in cultured cancer cells support the notion that
pro-oxidative and electrophilic activities of ITCs serve as a main driving force of
their anti-tumor properties. The electrophilic nature of ITCs determines their
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targeting to molecules containing nucleophilic moieties. Indeed, upon entering cells
ITCs are metabolized by conjugation with the cysteine residue of GSH, and due to
extracellular exclusion of such conjugates during the detoxification process, cause
depletion of this main cellular redox buffer. This, together with direct reactivity with
cysteine residues within their target proteins and oxidative stress mediated via the
mitochondrial pathway, challenges the cellular anti-oxidant defense. Such condi-
tions stimulate the response of redox-sensitive proteins. One of them is Keap1,
which upon sensor cysteine modification by ITCs loses its ability to target Nrf2
for ubiquitination and proteasomal degradation, enabling Nrf2 to accumulate, trans-
locate to the nucleus and act as a transcription factor for cytoprotective genes
regulated via ARE/EpRE. Subsequent increase of cytoprotective enzymes deter-
mines the restoration of the GSH pool and re-balancing of the cellular redox
homeostasis. Nevertheless, this pro-survival signaling can be confronted by cell
death-promoting pathways that are turned on in response to ITC-mediated cellular
stress. Thiocarbamoylation of proteins, such as tubulin, proteasome or topoisomer-
ase II, has been demonstrated as an early and critical event for induction of apoptosis
and cell cycle arrest by ITCs. Similar reactivity of ITCs toward Complex III of the
mitochondrial respiratory chain has been suggested to trigger ROS production and
further mitochondrial damage, contributing to caspase-executed apoptosis.

Undoubtedly, ITCs possess potential to exhibit various biological activities. This
renders this family of compounds highly effective in providing protection against
cancer in animal models, induced by a variety of chemical carcinogens. In addition
to preventing chemically induced cancers, several ITC compounds have also been
shown to inhibit growth of cancer cells in vivo. In translating the anti-cancer efficacy
of ITCs into the clinic, combinatorial therapy has been suggested whereby chemo-
preventive compounds are given in association with drugs currently used in chemo-
therapy, to achieve synergistic interaction for anti-cancer activity and reduce harmful
effects (Russo et al. 2010).
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