

German Cancer Research Centre DKFZ Heidelberg Germany 17 May 2018

Health economic evaluation and high cost services: The need for reconsideration

Jeff Richardson Emeritus Professor, Foundation Director Centre for Health Economics Monash Business School Monash University Australia www.monash.edu/business/che

MONASH BUSINESS SCHOOL

SUMMARY

Objective of economics Best allocation of finite resources <u>BUT</u> methods have mixed success

■ Simple competitive markets √ √

2

Social infrastructure - ??

- Economic evaluation
 - ← Unsupported assumptions *wrt* values, motivations
- Empirical evidence
 - \rightarrow Need for revision of theory/practice
 - → Fairness first paradigm

ie theory, methods commence with fairness

OUTLINE

- 1. Welfare theory
- 2. Where economic evaluation theory fails

4

- Utility maximisation
- Expected utility theory
- Fairness
- 3. Empirical evidence
 - Individual values
 - Sharing
- 4. Need for a paradigm shift

MONASH BUSINESS SCHOOL 7535-H

1. WELFARE THEORY

WELFARE THEORY: THE FOUNDATION OF EVALUATION THEORY

WELFARE THEORY (Summary)

BUYER PERSPECTIVE

 Key Element: Direct comparison by buyer
 Benefit <u>vs</u> Cost
 Satisfaction gained
 Satisfaction lost elsewhere

8

BUYER PERSPECTIVE

Key element:

9

- Key to efficiency = choice (consumer sovereignty)
 - a) The buyer is in the best position to judge net benefit and choose
 - b) Resources gravitate to the products preferred by buyer
- Consequence: preferences (utility) maximised

MONASH

BUSINESS SCHOOL

SOCIAL PERSPECTIVE

All individuals maximise utility, U.

Therefore Social welfare $W=f[U_1 \dots U_n, only]$ = 'Welfarism'

MONASH BUSINESS SCHOOL 7535-H

A FEW PROBLEMS WITH WELFARE THEORY

Motivation Is utility the only motivation?? <u>BUT</u> Behaviour ←habit/duty/religion/conformity/ marketing, etc

Motivation Is utility the only motivation?? BUT Behaviour ←habit/duty/religion/conformity/ marketing, etc 'Solution' Revealed preference criterion If chose X then by definition you prefer X to alternatives Choice identifies utility

PROBLEM 2 RISK

Outcomes	Subject to risk Utility ignores risk
'Solution'	People maximise expected utility (EU) EU=Σ p _i U _i =EUT
	EUT=Expected Utility Theory

Claim: p_i=takes account of risk attitude

PROBLEM 2 RISK

Outcomes	Subject to risk Utility ignores risk
'Solution'	People maximise expected utility (EU) EU= $\Sigma p_i U_i$ =EUT
	EUT=Expected Utility Theory
	Claim: p _i =takes account of risk attitude
Health Economics	Outcomes <i>st</i> risk Use standard gamble to assess utility Utility ← gamble, takes account of risk attitude

PROBLEM 3 DISTRIBUTION

Social Welfare

$f(U_1 \dots U_n) \dots$ ignores distribution of utility

PROBLEM 3 DISTRIBUTION

Social Welfare 'Solution' $f(U_1 \dots U_n) \dots$ ignores distribution of utility

Potential compensation principle (Kaldor Hicks) 'If gain to A > loss to B' then compensation is possible = Better outcome

PROBLEM 3 DISTRIBUTION

Social Welfare 'Solution'

Conclusion

- f($U_1 \dots U_n$) ... ignores distribution of utility Potential compensation principle (Kaldor Hicks) 'If gain to A > loss to B' then compensation is possible = Better outcome
 - If utility maximised
 - = 'Utilitarianism'

RESULT

- A logically complete system
- Assumptions \rightarrow most 'efficient' (ie maximising) outcome
- Important caveat
 - Welfare theory permits an 'equity-efficiency trade-off' BUT Rules for efficiency clear, explicit No rules /guidelines for equity
 - Implies 'efficiency focused' paradigm

MONASH BUSINESS SCHOOL

1(a) Adaptation to Health Economic Evaluation

- Welfare theory
 - Key to efficiency = the direct comparison of benefits/costs by buyer
- Health economics evaluation
 - Health authority makes comparison (input from)
- Response: retain the key equation: cost/benefit < 1</p>
- - ← estimated benefit

THE EVALUATION FRAMEWORK

- Benefit = QALYs
- QALY = (life years)*(utility) = utility of benefit

= Quality adjusted life year 'utility' = strength of preference

Decision criterion

Minimise cost/QALY

 \rightarrow maximum QALYs from a budget

7535-H

MONASH

BUSINESS SCHOOI

- Benefit ← individual comparison cost <u>vs</u> benefit
- Changes violate assumptions of welfarism Response
- QALY = measure of 'health'
- Other assumptions OK
- Welfarism → Extra Welfarism

- QALYs = best estimate of (duration weighted) utility or 'health'
- Min cost/QALY → max QALYs
- Assumptions
 - Total health/QALYs ↑
 - \rightarrow social welfare \uparrow

MONASH BUSINESS SCHOOL 7535-H

2. WHERE ECONOMICS FAILS

- Implementation imperfect methods
 - eg Measuring utility: seriously defective (EQ-5D)
- Theory = 'foundations' of evaluation methods
 - ← problematic assumptions = focus below
 (bad theory → measurement irrelevant or ambiguous use)

PROBLEM 1: INDIVIDUAL MOTIVATION

- Is maximising utility the only motivation?
 - Habit/duty/religion/conformity/marketing ??

PROBLEM 1: INDIVIDUAL MOTIVATION

- Is maximising utility the only motivation?
 - Habit/duty/religion/conformity/marketing ??
- 'Solution': the revealed preference criterion
 - Revealed preference criterion
 - If choose x then, by definition, you prefer x to alternatives
 - Choice identifies utility

PROBLEM 1: INDIVIDUAL MOTIVATION

- Is maximising utility the only motivation?
 - Habit/duty/religion/conformity/marketing ??
- 'Solution': the revealed preference criterion
 - Revealed preference criterion
 - If choose x then, by definition, you prefer x to alternatives
 - Choice identifies utility
- Criterion behaviourally barren

THE REVEALED PREFERENCE TAUTOLOGY

FAILURE OF REVEALED PREFERENCES

- If Utility maximisation \rightarrow harmful outcome (eg ignorance)
 - Choice \rightarrow regret (individual)
 - Choice rejected by paternalistic policy

• If Utility maximisation \rightarrow harmful outcome (eg ignorance)

7535-H

MONASH

BUSINESS SCHOOL

- Choice \rightarrow regret (individual)
- Choice rejected by paternalistic policy
- Collective decision making eg NHS
 - Revealed (individual) preference not possible

CONCLUDE

- CUA mpirical evidence of individual motivation
- Behavioural economics = a response
- Health economics unaffected (to date)

PROBLEM 2: EXPECTED UTILITY THEORY

People maximise expected utility (EU = $\Sigma p_i * U_i$)

... Empirically wrong (Allais 1953; Schoemaker 1982 *ff*) ... largely ignored

→ Omission of utility of risk per se (thrill/dread of etc) (Von Neumann and Morgenstern)

PROBLEM 2: EXPECTED UTILITY THEORY

People maximise expected utility (EU = $\Sigma p_i * U_i$)

... Empirically wrong (Allais 1953; Schoemaker 1982 *ff*) ... largely ignored

7535-H

MONASH

BUSINESS SCHOOL

→ Omission of utility of risk per se (thrill/dread of etc) (Von Neumann and Morgenstern)

BUSINESS SCHOOL

EUT: THE OMISSION OF A TIME DIMENSION

37

CONCLUDE

CUA ignores emotions/behaviours in pre-outcome period

RECENT TEST OF CHOICE AND EUT

One of 2 illnesses will occur Service A, B \rightarrow QoL \uparrow Purchase insurance as P(A), P(B) varies

<u>Conclude:</u> Economic evaluation ignores risk

Richardson et al 'Uncertainty and the Undervaluation of services for severe health states in CUA', Value in Health (on line 2017)

MONASH BUSINESS SCHOOL

PROBLEM 2: SOCIAL PREFERENCES

- Do people want maximum QALYs
 - Maximisation ignores distribution
 4 people: (5+5+5+0)>(3+3+3+3)
 15 QALYs > 12 QALYs

PROBLEM 2: SOCIAL PREFERENCES

- Do people want maximum QALYs
 - Maximisation ignores distribution
 4 people: (5+5+5+0)>(3+3+3+3)
 15 QALYs > 12 QALYs
 - − CUA \rightarrow winners/losers

JUSTIFICATION FOR NON-PROVISION TO LOSERS

- Rhetorical ... more QALYs ('health') better than less losers ... lose!
- Ethical ... utilitarianism: an assumed goal
- Evidence of population support ... na

7535-H

3. EMPIRICAL EVIDENCE: INDIVIDUAL VALUES

SURVEY EVIDENCE FROM AUSTRALIA (n=455)

Which ethical principle

- Australians are not hedonic utilitarians
 - 'Action producing happiness is always right'

agree	22.8%
disagree	57.4%

'Maximising happiness is more important than any other principle'

7535-H

MONASH BUSINESS SCHOOI

MONASH

BUSINESS SCHOOL

SURVEY EVIDENCE FROM AUSTRALIA (n=455)

- There is a strong commitment to 'duty', 'role in community' (solidarity/communitarianism)
 - 'I must fulfil duties even if it makes me less happy'

agree 92.0% disagree 8.0% 'Having duties is a natural part of being a member of society' agree 95.0% disagree 5.0%

'People help others only because they gain something personally'

agree	18.2%
disagree	60.7%

CONCLUDE

- Personal motivation
 ≠ pure self interest
- Social motivation therefore: unlikely to be the sum of individual self-interest
- Task: what personal motivations are relevant to social decisions

EVIDENCE FROM ANTHROPOLOGY

Behaviour ← social role/social inter-relations

- Social behaviour
 - Motivation
 - Reciprocal altruism ('weak reciprocity')
 - Help others expect reciprocal treatment
 - Strong reciprocity
 - Punish others for selfishness in absence of self interest

EVIDENCE FROM ANTHROPOLOGY

Behaviour ← social role/social inter-relations

- Social behaviour
 - Motivation
 - Reciprocal altruism ('weak reciprocity')
 - Help others expect reciprocal treatment
 - Strong reciprocity
 - Punish others for selfishness in absence of self interest
 - Evidence: Behavioural economics
 - Ultimatum game: Personal loss to punish unfair behaviour
 - Dictator game: Share with others at personal loss; no possible penalty

EVIDENCE FROM ANTHROPOLOGY

Behaviour ← social role/social inter-relations

- Social behaviour
 - Motivation
 - Reciprocal altruism ('weak reciprocity')
 - Help others expect reciprocal treatment
 - Strong reciprocity
 - Punish others for selfishness in absence of self interest
 - Evidence: Behavioural economics
 - Ultimatum game: Personal loss to punish unfair behaviour
 - Dictator game: Share with others at personal loss; no possible penalty

- 'Sharing is a core feature of human society' (Kameda 2002)

7535-H

3b. EMPIRICAL EVIDENCE Allocating The Budget: Results from 4 surveys

SIMILAR METHODS

- Web based allocation exercises
- Fixed budget: Iow cost QALY ... CUA includes
 allocate between A higher cost QALY ... CUA excludes
- Budget rises, sharing possible

Sharing Survey 1

MAXIMISING HEALTH VERSUS SHARING: MEASURING PREFERENCES FOR THE ALLOCATION OF THE HEALTH BUDGET

Richardson J, Sinha K, Iezzi A, Maxwell A Social Science and Medicine 2012 75(8):1351-1361

WEB BASED ALLOCATION EXERCISE (n=532)

Patient 1	12	yrs		12 yr:	S		12 yr:	S		12 yr:	5
Patient 2	8 yrs 8 y		rs 8 yrs		8 yrs 8 y		/rs 8 yrs		yrs		
Patient 3	6 yrs	6 yrs	6 yr:	s (6 yrs	6 yr	s (6 yrs	6 yr	s 6	6 yrs
Patient 4	4 yrs 4 y	vrs 4 yrs	4 yrs	4 yrs	4 yrs	4 yrs	4 yrs	4 yrs	4 yrs	4 yrs	4 yrs

CEA AND LIFE YEARS ALLOCATED

SURVEY RESULT

CONCLUSION, SHARING SURVEY 1

- Cost is relevant
 <u>But</u>
- Sharing with most costly treatment immediate

SHARING 2 LIFE EXTENSION

Sharing and the provision of "cost ineffective" life extending services to less severely ill patients

Richardson, lezzi, Maxwell Value in Health 2018 (in press)

	Α	В
Life expectancy	10	2
Cost/LY	2,000	1,000
Budget = progressively increases		
n=430		

PERCENT OF INCREMENTAL LIFE YEARS GIVEN TO PATIENT A: LIFE EXPECTANCY^{7535-H} LONGER; COST/QALY HIGHER

MONASH BUSINESS SCHOOL

SHARING 3 QoL

Sharing in a communal health scheme when services improving the quality of life are not cost effective and patients are not severely ill

Richardson, Iezzi, Maxwell Medical Decision Making 2018 (under review)

SHARING QUALITY (n=203)

SHARING SURVEY 4: Orphan Products

Sharing in a communal health scheme when services improving the quality of life are not cost effective and patients are not severely ill: Results of a population survey

Richardson, lezzi, Maxwell *PharmacoEconomics* 2017; online 2016

- Allocate a budget
 - Illness A: 5 patients (no treatment die; budget $\uparrow \rightarrow QoL \uparrow$)
 - Illness B: many patients (budget $\uparrow \rightarrow QoL \uparrow$)
- Cost varied: 1 QoL A = 20, 15, 10, 5, 2 x Cost 1 QoL B
- Size Group B varied: n = 100, 300, 600

TRADE-OFF

- Budget to $A \rightarrow$ less for B
- Small benefit/\$ <u>vs</u> large benefit \$
- Small total benefit <u>vs</u> large total benefit

TRADE-OFF

- Budget to $A \rightarrow$ less for B
- Small benefit/\$ <u>vs</u> large benefit \$
- Small total benefit <u>vs</u> large total benefit

Sailor at Sea Hypothesis

- Small numbers in group A \rightarrow low loss/person B
- Urgent benefit A <u>vs</u> non urgent effect B
- Hypotheses
 - Immediate sharing (CUA \rightarrow no budget for A)

Number of B \uparrow \rightarrow loss/person B \checkmark \rightarrow sharing \uparrow

 $\operatorname{Cost} \mathsf{A} \uparrow \rightarrow \operatorname{sharing} \Psi$

7535-H

MONASH

BUSINESS SCHOOL

ALLOCATION TO HIGH COST PATIENT (B)

INSURANCE A BY PRICE A AND SIZE OF GROUP B

MONASH BUSINESS SCHOOL

CONCLUSION SHARING STUDIES

- Design to date prevents sharing
- Sharing allows
 - Partial treatment of high cost/QALY services
 - In exchange for small loss for less severe patients

7535-H

4. FAIRNESS vs EFFICIENCY PARADIGMS

Motivation as a citizen in a social context

 ≠ motivation as an individual (Aristotle)

 Individual, utility maximisation

7535-H

Monash Business Schooi

- a) An inadequate explanation of behaviour
- b) (Wrongly) extrapolated to social context
- 2. Utilitarianism: excludes individuals rejected by public never empirically supported

REASONS FOR CHANGE FROM ECONOMIC THEORY (Cont)

- 3. Exclusion of patients
 - Violates medical practice
 - Violates social preferences
- 4. Community support
 - Sharing
 - Other fairness variables in literature

- Extra Welfarism (Present theory)
 - Focus: Services (\leftarrow simple theory of a market)
 - Objective: Maximise efficiency of service mix
 - Rationing: Exclude services
- Communitarianism
 - Focus: Patients
 - Objective: Universal entitlement
 - Rationing:
- Intensity of care

TWO PARADIGMS

Attribute	Present (Extra Welfarism)	Communitarianism
Analytical Focus	Maximisation	Optimisation (Fairness)
Social objective	Max utility	Fair sharing
Criterion for funding	Cost/QALY < threshold, T	Presumed entitlement
*Exclusions	Yes Cost/QALY >T	No (except extreme cases)
*Caveat	Ad hoc adjustment for undefined equity	Systematic adjustment for cost effectiveness
Funding formula	If criterion met, then 100% funding	Level of treatment varies =f[fairness variables, cost, effectiveness]
*Role of cost	Pivotal: max benefit ← min cost	Secondary: alters allocation, ie the intensity of care
Ethical basis	Utilitarianism	Communitarianism satisfaction of community preferences

- Challenges (hopefully) for future research
- Agreement/quantification of fairness
- Who makes the decisions?

7535-H

SOLUTIONS TO 'UNRESOLVED ISSUES' EXIST

Agreement/quantification of fairness

- Empirical Ethics
 - Ultimate authority
- ← society✓ historical assumptions

7535-H

MONASH

SCHOOL

BUSINESS

HYPOTHETICAL WEIGHTS w* INCORPORATING SEVERITY AND SHARING⁽¹⁾

Percent of population	Initial Severity	1.0	0.8	0.6	0.4	0.2	
	Sev ^{0.5}	1.0	0.89	0.72	0.63	0.45	
Ν	N ⁴³⁴	(Sev ^{.5})(N ⁴³⁴)(Share)Y					
0.001	20	20	17.8	15.4	12.6	8	
0.01	7.3	7.3	6.5	5.6	4.6	2.9	
1.0	1	1	0.89	0.72	0.63	0.45	
10	0.37	0.37	0.33	0.27	0.23	0.17	

(1) $w^*=1/w$, where w = the threshold weight in equation 2

AN ETHICAL JUSTIFICATION FOR SHARING/FAIRNESS BASED PARADIGM

- Utilitarianism ... historical not empirical numerous alternatives exist
- Deontological ethics (duty etc)
 ... population support
- Communitarian ethics

... population support ... the Golden Rule (Christianity) (reciprocal altruism) 7535-H

MONASH

BUSINESS SCHOOI

- Statutory (or advisory) body (like Reserve Bank, Bureau of Statistics)
- Composition ... see McKie et al Focus Group → mixed composition

7535-H

AN ETHICAL JUSIFICATION FOR SHARING/FAIRNESS BASED PARADIGM

- Utilitarianism ... historical not empirical numerous alternatives exist
- Deontological ethics (duty etc)
 ... population support
- Communitarian ethics
 - ... population support
 - ... the Golden Rule (Christianity)
 - (reciprocal altruism)

CONCLUDING COMMENT

Could economists be fundamentally wrong for so long?

- YES Evaluation theory ⅔ empirical error learning
 - Wrong allocation formula
 - ✤ stock exchange crash
 - ★ bridge collapse
 - \clubsuit contradictory observations
 - Result
 - Errors invisible
 - None to challenge economists' authority
 - Alternative
 - 'Empirical Ethics': Population values s.t. ethical critique
 - Ultimate arbiter: (laundered) social values

MONASH

BUSINESS SCHOOI

MONASH BUSINESS SCHOOL

Thank You

MONASH BUSINESS SCHOOL

Vielen Dank