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Abstract. Surgical scene understanding is a key prerequisite for context-
aware decision support in the operating room. While deep learning-based
approaches have already reached or even surpassed human performance
in various fields, the task of surgical action recognition remains a major
challenge. With this contribution, we are the first to investigate the
concept of self-distillation as a means of addressing class imbalance and
potential label ambiguity in surgical video analysis. Our proposed method
is a heterogeneous ensemble of three models that use Swin Transfomers
as backbone and the concepts of self-distillation and multi-task learning
as core design choices. According to ablation studies performed with the
CholecT45 challenge data via cross-validation, the biggest performance
boost is achieved by the usage of soft labels obtained by self-distillation.
External validation of our method on an independent test set was achieved
by providing a Docker container of our inference model to the challenge
organizers. According to their analysis, our method outperforms all other
solutions submitted to the latest challenge in the field. Our approach
thus shows the potential of self-distillation for becoming an important
tool in medical image analysis applications.

Keywords: Surgical action recognition · Self-distillation · Laparoscopic
surgery · Surgical workflow

1 Introduction

Surgical scene understanding is an important prerequisite for artificial intelligence
(AI)-empowered surgery [11], underlying a range of application areas such as
context-aware decision support, autonomous robotics, and workflow optimization.
One of its key components is the fully-automatic recognition of the surgical action
performed at a given point in time – a task not yet solved by state-of-the-art-
methods. To advance the field, the CholecTriplet challenge was organized in the
scope of the Medical Image Computing and Computer Assisted Interventions
(MICCAI) conferences 2021 and 2022. However, according to the organizers
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analysis [14,17], the task still remains unsolved. The guiding hypothesis of our
work was that self-distillation could address some of the challenges in surgical
action recognition, namely the high number of classes (100 in the case of Cholec-
Triplet); high class imbalance, and label ambiguity. Self-distillation builds upon
the widespread concept of knowledge distillation (KD) [5], in which the knowledge
is transferred from one deep model (i.e., a teacher) to another shallow model (i.e.,
a student). Self-distillation diverges from traditional KD by distilling knowledge
within the network itself. While KD is already used in various communities,
the purpose of this work was to pioneer the concept of self-distillation in the
context of surgical data science. Based on the CholecTriplet training data set,
we developed a method for surgical action recognition (Fig. 2) that leverages
self-distillation, Swin Transformers [10], multi-task learning, and ensembling as a
core design choice. The following Sec. 2 presents our methodological contribution
in detail. Sec. 3 presents ablation studies on the challenge data set that reveal the
most important design choices as well as an external validation of our solution
on an independent surgical video data set. We conclude with a brief discussion
of the most relevant aspects of our work in Sec. 4.

Fig. 1: Task of surgical action recognition. (a) Each action is represented
by a triplet comprising instrument, verb and target. Multiple triplets can be
present in one image, as shown in the example. (b) CholecTriplet training data
set illustrating the heavy class imbalance. Of 100 possible triplet classes, the
prevalence ranges from 0.01% to 44.6%.

2 Methods

2.1 Task description and dataset

Our study is based on the CholecTriplet Challenge 2022 [17], which was conducted
under the umbrella of the Endoscopic Vision Challenges (EndoVis) in conjunction
with MICCAI. The Surgical Action Recognition task required participants to
submit solutions that recognize surgical action triplets in laparoscopic videos, as
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Fig. 2: Approach to surgical action triplet recognition. (a) Our architecture
leverages Swin Transformer (SwinT) as a backbone and the concepts of self-
distillation, multi-task learning, and ensembling as core strategies. The teacher
model is trained on hard labels using binary cross-entropy (BCE) loss. Inferencing
the training data, the sigmoid probabilities are used as input in the next step.
The student model is trained with the noisy soft labels in a multi-task fashion to
minimize the BCE loss, commonly referred to as distillation loss, between the
teacher and the student’s predictions. (b) Visualization of label distribution in
hard and soft labels.

illustrated in Fig 1. The challenge granted access to the CholecT45 [18] dataset
which consists of 45 video recordings of laparoscopic cholecystectomy with a total
of 90,489 frames. CholecT45 is annotated with 100 action triplet classes, with
one instrument, verb, and target forming a triplet. The annotations include six
different instrument classes, ten verbs (denoting the action performed), and 15
targets such as organs, tissues, or foreign bodies (clip, specimen bag, etc.). The
theoretical maximum of 6 · 10 · 15 classes was reduced to the above-mentioned
100 based on medical relevance and prevalence. An example image from the
CholecT45 dataset containing two triplet annotations can be seen in Fig. 1 (a).
A chart depicting the highly imbalanced class distribution is shown in Fig. 1 (b).

2.2 Concept overview

As illustrated in Fig. 2, our approach is based on the following key components:
(1) Swin Transformer: The recently proposed Swin Transformer [10] architecture
was chosen as backbone. (2) Multi-task learning: Based on the success of previous
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work that leveraged multi-task learning as its training paradigm, we incorporated
multiple auxiliary tasks in our architecture, namely the classification of the
individual components of the triplet (instrument, verb, and target) as well as the
surgical phase. (3) Self-distillation: The core idea of our approach is the usage of
soft labels to reduce overconfidence and address label ambiguity. (4) Ensemble:
Following common successful training strategies, we implement ensembling to
combine the predictions of three trained Swin Transformers of different scales.

2.3 Implementation details

Swin Transformer We base our method on Swin Transformer (SwinT) models
of the timm [22] library and adopted the final classification layer to output the
100 triplet predictions, as well as the individual instruments, verbs, targets and
surgical phase as auxiliary tasks to leverage the interconnection between them in
a multi-task fashion (+Multi).
Self-Distillation The concept of self-distillation was achieved by training a
teacher Swin transformer on one-hot encoded hard labels for 20 epochs, with
a batch size of 64, an Adam [9] optimizer, a learning rate of 2 × 10−4, a cosine
annealing scheduler decreasing to a minimum learning rate of 2 × 10−6, and a
binary cross-entropy loss function. The model was trained with light augmenta-
tions that comprise resizing the images to 224x224 pixels, horizontal and vertical
flips, rotation, brightness and saturation perturbations with a probability of 0.5.
We trained five teacher and five student models; one for each fold of the official
five-fold cross validation splitting introduced by the challenge. The teacher was
trained on four of the five splits of its fold. After convergence, the soft labels
(i.e., the sigmoid probabilites) for the same four splits were computed and the
student was trained using these soft labels. The validation was performed on
the fifth split, using hard (i.e., the original) labels for both the teacher and the
student. During inference, the sigmoid probabilities of the five student models
were averaged to yield the final result. The five teacher models shared a common
weight intialization seed. The five student models shared a separate weight ini-
tialization seed. The student models were trained for 40 epochs with the same
augmentations as the teacher models. We saved the weights on the epoch with
the best mean Average Precision (mAP) score based on the validation split for
the current fold.
Ensemble We combined three trained Swin Transformers (SwinT) of different
scales (SwinT base/SwinT large) and configurations for our final ensemble (Ens)
model: First, we employed a SwinT base model with multi-task learning of in-
strument, verb, and target and trained it using self-distillation. Second, we used
a SwinT large model using the same approach, and added label smoothing to the
soft labels. Third, we included phase annotations as an additional task for the
multi-task training of a SwinT base model still employing self-distillation. Please
note that every single model mentioned here corresponds to the five aggregated
student models of the previous paragraph.
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3 Experiments and results

The purpose of the experiments was to validate the performance of our method
and to quantify the (potential) benefit of each individual component. To this end,
we conducted (1) comprehensive ablation studies using the CholecT45 official
5-Fold cross-validation split [16], (2) an analysis of the specific benefit of soft
labels, and (3) an external validation based on a Docker container submitted to
the CholecTriplet 2022 challenge organizers. The Rendezvous Net [17], provided
by the challenge organizers, served as the benchmark. In line with the challenge
design [12], we validated the performance using mAP (following the aggregation
scheme in [14]) and the top K=5 Accuracy as metrics. All scores were computed
using the ivtmetrics library [16].

Ablation studies We designed the ablation studies as follows: We first calculated
the performance of our Swin Transformer backbone as a stand-alone triplet
classifier (SwinT). Next, we added multiple auxiliary targets (instruments, verbs,
targets, and phases) for multi-task classification (+MultiT). As a third component,
we implemented self-distillation by training a student model on soft labels,
acquired by training the teacher model (+SelfD). The fourth step was the
ensembling of three student model Swin Transformers (+Ens). The results are
shown in Tab. 1. A single SwinT as model backbone yields a higher mAP for
triplet classification (mAP=32.3%) than the benchmark (mAP=28.8%), which
corresponds to a relative improvement by 10.3%. The biggest boost was achieved
by including self-distillation, which improved the Triplet mAP and top-5 accuracy
by 3.8 percentage points (pp) and 2.4pp, respectively, compared to our baseline.
The final model yielded a mAP of 38.5% and a top-5 accuracy of 86.5%, which
corresponds to a boost of 6.2pp in mAP and 2.7pp in top-5 accuracy compared
to our own baseline, and a relative improvement by 33.7% for mAP compared to
the state-of-the-art method. For transparency, we also provide per-video results,
depicted in Fig. 3. With a few exceptions, our final model consistently provides
the best results.

Analysis of soft labels The addition of self-distillation resulted in the highest
boost in performance. This holds true despite the fact that the mAP of the
teacher model, trained on hard labels, was about 88% on the training set, which
is suboptimal. The question is thus why the poorer soft labels still yielded a
performance improvement. While part of the answer is provided in the literature
on soft/noisy labels [8,13,21,24], we also speculated that the soft labels may
address the issue of ambiguous/erroneous labels in our particular use case. More
specifically, we assumed that in the case of a faulty (wrong) annotation, the
reference and ground truth label might be semantically close to each other.
Hence, if the student model increases the scores of semantically close triplets,
it might actually increase the value for the ground truth label, which might
explain the performance boost. To investigate whether this is the case, we first
defined a pragmatic proxy metric for semantic similarity: the number of identical
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Fig. 3: Quantitative results on the validation data. (a) mean Average
Precision (mAP) plotted separately for each video for five configurations of our
method with increasing complexity. A Swin Transformer (SwinT) was gradually
complemented by multi-task learning (MultiT), self-distillation (SelfD), and
ensembling (Ens). Videos were sorted by mAP score of final ensemble performance
from highest to lowest. (b) Corresponding dot- and boxplots of mAP scores.

triplet items (max: two for different triplets). We then selected all frames with
only one unique triplet label and retrieved the top five triplets (excluding the
reference) with the highest soft label score. Fig. 4, depicts an example of such
a comparison. The reference triplet “bipolar, dissect, cystic plate” is shown
with five soft label triplets ranked by probability. In the example, the top five
triplets share an average of 1.6 components with the reference, indicating that
they contain similar semantic information. We found that over all samples, the
average number of component matches between reference and top five triplets is
1.0±0.002. In contrast, when comparing the reference with five triplets randomly
drawn (while respecting prevalence), the agreement is 0.5±0.002. This shows
that self-distillation specifically leads to increased scores for semantically related
classes. Fig 5 shows examples of training images with corresponding soft labels.
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Cross Validation
External validation

(CholecTriplet 2022 test set)
Triplet

mAP [%]
Top-5

accuracy [%]
Triplet

mAP [%]
Top-5

accuracy [%]

Rendezvous 28.8 N/A 32.7 69.3

Ours: SwinT 32.3 83.8 32.9 70.7

Ours: SwinT + MultiT 33.1 84.6 33.8 71.6

Ours: SwinT + SelfD 35.0 85.2 36.1 72.9

Ours: SwinT + MultiT
+ SelfD

36.1 86.2 37.3 73.3

Ours: SwinT + MultiT

+ SelfD + Ens
38.5 86.5 37.4 74.0

Table 1: Main quantitative results Starting from our backbone model – a
Swin Transformer (Swin T) – we gradually added individual components, namely
multi-task learning (MultiT), self-distillation (SelfD), and ensembling (Ens). Each
component addition leads to an increase in mAP and top-5 accuracy, in both
cross-validation (left) and independent external validation (right). N/A: Not
available.

Independent external validation External validation was conducted on the
CholecTriplet challenge test set. The results, shown in Tab. 1, confirm the results
from cross-validation experiments, with the final ensemble scoring 37.4% in mAP.
This equals an absolute improvement of 4.7pp and a relative improvement of
14.4% compared to the Rendezvous benchmark (mAP= 32.7%). According to
the challenge organizers, our method outperformed all other solutions submitted
in 2022 by at least 2.9pp (Triplet mAP) and 8.3pp (top-5 accuracy) absolute.

4 Discussion

This paper pioneers the concept of self-distillation in the medical image analysis
domain. Specifically, we are the first to tackle key challenges in surgical action
recognition, namely the high number of classes and class imbalance, with self-
distillation. Comprehensive ablation studies combined with external validation
yielded the following findings:

1. Swin Transformers, as recently introduced by the computer vision community,
can serve as a strong backbone in endoscopic vision tasks. This is suggested
by the fact that even our most ablated model, consisting of a single Swin
Transformer, surpasses the state-of-the-art surgical action recognition method
Rendezvouz.

2. Multi-task learning, here using the classification of instrument, verb, and
target as well as of the surgical phase as auxiliary tasks, yielded a notable
increase in performance.



8 Amine Yamlahi et al.

Fig. 4: Example of generated soft labels with reference (in green) and top 5
soft label triplets ranked by probability (in red). Average number of component
matches between reference “bipolar, dissect, cystic plate” and top five triplets is
1.6.

Fig. 5: Examples of training images with corresponding soft labels. (a)
Single triplet with corresponding unambiguous (confident) soft label (b) Case
with a poor reference label. The missing triplet “grasper, grasp, gallbladder” is
compensated for in the soft label annotation, leading to a more complete reference
in the actual network training achieved by self-distillation.

3. Self-distillation yielded the biggest boost in performance, suggesting that soft
labels are better suited for surgical action recognition.

4. Ensembling increased performance further, as also suggested by various
publications in a wide range of fields.

Overall, the addition of self-distillation (in combination with the Swin Trans-
former as a backbone) resulted in the highest performance boost. While label
noise has been shown to be beneficial in various work [8,13,21,24], the concept
of self-distillation may not necessarily be intuitive; although the mAP achieved
by the teacher model, trained on hard labels, is suboptimal (32%), the teacher’s
noisy labels lead to an overall improvement in performance when compared to
the (presumably better-quality) hard labels. In the general machine learning
literature, the knowledge encoded in noisy labels is referred to as ”dark knowl-
edge” because it is not yet well-understood. Aiming to shed light on this topic,
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our experiments on semantic similarity suggest that soft labels may actually
address the issue of ambiguous/erroneous labels. Further analyses with more
sophisticated metrics for semantic similarity are, however, needed to support this
finding.

Related work has so far tackled the challenge of surgical action recognition
with various strategies including multi-task learning [15,19], and different atten-
tion mechanisms [3,18] incorporated into diverse architectures based on temporal
convolutional networks [2,19], transformers [3,4,18], or combinations of convolu-
tional neural networks (CNN) with recurrent neural networks (RNN) [6,7,15,23]
or hidden Markov models (HMM) [20]. While our approach was particularly
successful according to the challenge analysis, the overall performance is still not
optimal. Advancing the methods will require more data that features a sufficient
number of samples for each triplet and captures the full variability of scenes that
might be encountered in practice. From a methodological perspective, future
work should be directed to efficiently taking temporal context into account and
addressing potential domain shifts [1].

In conclusion, our study is the first to demonstrate the benefit of self-
distillation for surgical vision tasks. Based on the substantial performance boost
obtained, the usage of soft labels could become a valuable tool in the endoscopic
vision community.
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