
High Performance Parallel 
Beam and Perspective Cone-
Beam Backprojection on Intel 

Xeon Phi 
Matthias Baer1,2 and Marc Kachelrieß1,2 

 

 

1German Cancer Research Center (DKFZ), Heidelberg, Germany 
2Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, Germany 

 



Aim 

To introduce some of the basic hardware and 

software features of Intel‘s new many core 

coprocessor Xeon Phi and implement an 

optimize parallel beam and perspective cone-

beam backprojection on Intel‘s Xeon Phi. 



Hardware Properties 

• Coprocessor connected via the 
PCIe bus to a host PC 

• 61 Pentium-like x86 cores (pre–
production engineering 
hardware sample, stepping B0) 

– Core frequency 1.2 GHz 

– 4 threads per core i.e., 244 
threads in total 

• 8 GB RAM 

• One vector unit per core with 32 
512 bit vector registers 

• Peak performance 2 TFLOPS 

• Price 2700 $ 

• Several Xeon Phis can run in a 
single host PC 



Programming Model 

• Programming for Xeon Phi can be done using either C/C++ or Fortran, no 
special programming language needed. 

• Regions in the program that should be executed on Xeon Phi are marked by a 
simple pragma directive: 

 

 

 

 

 

 

 

• Parallelism can be added for example by using OpenMP. 

• A key factor to achieve a high performance on Xeon Phi is vectorization: 

– Xeon Phi has 512 bit vector registers, modern CPUs typically have 128 bit or 256 bit 
registers. 

– On Xeon Phi 16 floats or 8 doubles can be processed at once, two respectively four 
times more than on modern CPUs. 

– Xeon Phi‘s vector instruction set is more flexible than the SSE (128 bit) or AVX (256 bit) 
instruction set on modern Intel CPUs. 

 



Vector Instruction Set 

• Interesting new features of the Xeon Phi instruction set: 

– Gather and scatter: Xeon Phi supports to load / store data from / to arbitrary 
memory locations. 
Current CPUs support load and store from continuous memory locations 
only 

• • • 

• • • 

• • • 

• • • Memory 

Register 

Continuous load and store Gather and scatter 

CPU (SSE or AVX) Xeon Phi 



Vector Instruction Set 
• Some interesting new features of the Xeon Phi instruction set are: 

– Xeon Phi supports the 16 bit floating point format (half). 

 

 

 

 

 

 

 

– Using halfs instead of floats reduces the pressure on the memory 
bandwidth. 

– It was shown that using halfs during the reconstruction does not impair 
image quality [1]. 

Main memory Register Register Main memory 

Convert from half to 

float and load 

Vector operation 

on float 

Convert float to half 

and save 

16 halfs 

Float Half 

[1] C. Maaß, M. Baer, and M. Kachelrieß, CT image reconstruction with half precission floating-point values,  

Med.Phys.  38(2),  656-667. 



Backprojection on Xeon Phi 

• Parallel beam and perspective cone-beam backprojection 

• Optimization techniques used in the implementations 

– Optimization of the data layout for the volume and the projection data 

– Parallelization over all available threads 

– Vectorization of the backprojection algorithms 

– Loop unrolling to hide instruction latency 

– Halfs instead of floats to represent the volume and projection data 



Optimization of Data Layout: 
Enforce Data Locality 

• Typically backprojection has high demands on memory bandwidth 

– Low number of arithmetic operations 

– High number of memory operations 

• Before data can be processed it needs to be loaded from main memory 
into the processors cache 

– Cache: Very fast memory close to the processor 

– Loading data from main memory into the cache takes a lot of time 

» Memory access approx. 300 clock cycles, instruction latency 4 clock cycles 

– Data are loaded in blocks from main memory into cache  

 

 

 

 

• To optimize cache usage try to localize the memory accesses 

CPU Cache Main Memory 

Single datum is 

needed 

Whole block is 

loaded 



Optimization of Data Layout 

Detector 

Source 

Optimized approach: 

 

Reconstruct sub volumes 

from sub projections to avoid 

cache misses and to optimize 

the performance of the 

backprojection. 

 

 

 

 

 

After the image has been 

updated from at least 180° the 

final image is obtained. 

Volume 

M. Knaup and M. Kachelrieß, Acceleration techniques for 2D parallel and 3D perspective forward- and backprojections, 

Fully3D 2007. 



Parallelization 

Detector 

Source 

Parallelization is done over 

the sub volumes. 

 

Each thread backprojects a 

single sub volume. 

Volume 

Thread 1 

Thread 2 

Thread 3 


 

 
 

M. Knaup and M. Kachelrieß, Acceleration techniques for 2D parallel and 3D perspective forward- and backprojections, 

Fully3D 2007. 



Vectorization –  
Parallel Beam Backprojection 

x 

y 

Vol(nz(z),ny(y),nx(x)) 
z 

θ 

n:  Projection index 

m:  Detector pixel index 

nx, ny, nz: Voxel index in x, y, z 

Same operation for all slices nz, i.e. 

operation can be vectorized 

M. Knaup and M. Kachelrieß, Acceleration techniques for 2D parallel and 3D perspective forward- and backprojections, 

Fully3D 2007. 



Vectorization – Parallel Beam 
Backprojection 

Reference code 

Vectorized Xeon Phi code 

1. Load image data into register 

2. Load raw data into register 

3. Add raw data to image 

4. Store image data back to memory 

With  Xeon Phi’s vector unit 16 slices 

can be reconstructed simultaneously 

(would be 4 on a CPU using SSE and 

8 using AVX). 



Vectorization – Perspective Cone-
Beam Backprojection 

The loop over nz, i.e. the loop over the z 
coordinate of the volume is a rescaling 

(scaling and resampling) operation. 
 

The irregular data access pattern in this 
loop prohibits a vectorization on 

standard CPUs since here only loads and 
stores from continuous memory 

locations are supported 
 

Xeon Phi’s vector unit supports gather 
and scatter, i.e. loads and stores from 

arbitrary memory locations. 
 

The nz loop can be vectorized on Xeon 
Phi, i.e. 16 xy-slices of the volume can be 

backprojected simultaneously. 



Performance Measurements 
• As performance measure giga updates per second (GUPS) was used [1]. 

• The number of updates to backproject a volume is given by the number of accesses 
to the volume needed for backprojection (e.g. the backprojection of 512³ voxels 
from 512 projections results in 5124 updates (=64 Giga updates)) 

• Test cases 

– Parallel beam backprojection: 512 projections, 512³ volume (64 giga updates) 

– Perspective cone-beam backprojection: 720 projections, 512³ volume, (85 giga updates) 

– Linear interpolation on the detector 

– Float and half data format for the projection data and the volume 

• The performance of the parallel beam and perspective cone-beam backprojection 
on Xeon Phi was compared with the performance on the GPU and the CPU. 

– GPU: NVIDIA Quadro 6000 GPU 

– CPU: PC equipped with two Intel Xeon E3-2670 processors, 2.6 GHz, 8 cores per processor, 
two threads per core, 256 bit vector registers 

• The implementations for CPU [2] and GPU [3,4] were also highly optimized. 

 

[1] I. Goddart et al., Evolution of computer technology for fast cone beam backprojection, Computational Imaging Conference 2007. 

[2] M. Knaup and M. Kachelrieß, Acceleration techniques for 2D parallel and 3D perspective forward- and backprojections, Fully3D 

2007. 

[3] M. Knaup and M. Kachelrieß, GPU-based parallel-beam and cone-beam forward- and backprojection using CUDA, IEEE Medical 

Imaging Conference Record 2008,. 

[4] S. Sawall, L. Ritschl, M. Knaup, and M. Kachelrieß, Performance comparison of OpenCL and CUDA by benchmarking an 

optimized perspective backprojection, Fully3D 2011. 



Performance Parallel Beam 
Backprojection 

 

 

 

 

 

• Xeon Phi reaches about the same performance as the CPU when the 
volume and the projection data are represented by floats. 

• Strong impact of half due to the bandwidth limitation of the parallel 
beam backprojection 

• Xeon Phi and the CPU outperform the GPU (NVIDIA Quadro 6000). 

 

 

Xeon Phi 

(floats) 

Xeon Phi 

(halfs) 

CPU 

(floats) 

GPU 

(floats) 

58 GUPS 81 GUPS 51 GUPS 25 GUPS 



Performance Perspective Cone-
Beam Backprojection 

 

 

 

 

 

• Xeon Phi outperforms the CPU at least by a factor of three. 

• Performance on Xeon Phi increases only slightly (≈10%) when 
switching from float to half. 

– Lower impact due to a lower ratio of memory operations to arithmetic 
operations as compared to the parallel beam backprojection 

– The usage of halfs has still the benefit of a lower overall memory 
consumption, e.g. larger volumes fit into the RAM of Xeon Phi. 

• Xeon Phi reaches about the same performance as the GPU (NVIDIA 
Quadro 6000). 

 

Xeon Phi 

(floats) 

Xeon Phi 

(halfs) 

CPU 

(floats) 

GPU 

(floats) 

27 GUPS 31 GUPS 7 GUPS 25 GUPS 



Summary and Conclusion 

• Xeon Phi is a highly parallel architecture (many cores, large vector registers). 

• Porting existing C/C++ code to Xeon Phi can be achieved with only minor 
modifications and the more flexible vector instruction set (e.g. scatter and 
gather) may allow to vectorize algorithms that are unvectorizable on the CPU. 

• Implemented and optimized a parallel beam and perspective cone-beam 
backprojection for Xeon Phi. 

– Memory layout, parallelization, vectorization, halfs for the volume and the projection 
data 

• The CPU and the GPU have clear favorites in terms of backprojection 
algorithms. 

– CPU is fast for parallel beam backprojection 

– GPU is fast for perspective cone-beam backprojection 

• Xeon Phi is competitive with both platforms even in their best cases. 

• Xeon Phi may be an alternative for reducing computation times for complex 
algorithms in medical imaging. 



Thank you. 

This project was supported by a grant from the Intel Corporation. 

This presentation will be soon available at www.dkfz.de/ct 


