Artefakt-resistente Bewegungsschätzung für die bewegungskompensierte CT

Marcus Brehm^{1,2}, <u>Thorsten Heußer¹</u>, Pascal Paysan³, Markus Oehlhafen³, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ³Varian Medical Systems Imaging Laboratory, Baden-Dättwil, Switzerland

Slowly Rotating CBCT Devices

Prior Art in IGRT (Respiratory-Correlated Reconstructions)

- Respiratory gating and phase-correlated reconstruction
 - Sparse-view artifacts deteriorate image quality
 - » Streak artifacts and image noise
- Dedicated acquisition techniques
 - These are not accepted in clinical routine, e.g., due to long acquisition times
- Motion-compensated reconstruction
 - Required motion estimation leads to
 - » increased patient dose required,
 - » or detour over planning CT

Aim

- Provide high quality respiratory-correlated 4D volumes from on-board CBCT scans
 - Image quality comparable to that of motionless regions (e.g. head, neck, ...)
- Do this with a standard acquisition protocol
- Do this without other prior information of higher temporal sampling such as a 4D planning CT

Account for inter-fractional variations in breathing motion

Retrospective Gating

Without gating (3D): Motion artifacts

With gating (4D): Sparse-view artifacts

Measured projections assigned to one phase bin

VAR AN medical systems

Motion Compensation (MoCo)

• Use all projection data for each phase to be reconstructed

- Even those of other phase bins
- Compensate for motion using motion vector fields (MVFs)
- In our case MVFs are estimated from gated reconstructions

Backproject-then-warp

VARTA

- Backproject sparse data along straight lines, warp with respect to the MVFs, and superimpose warped backprojections of all sparse data
- Projection data p, phase-correlated reconstruction operator $\mathbf{X}_{\mathrm{PCF}}^{-1}$, MVF \mathbf{T}_{j}^{i} from phase bin j to phase bin i

$$f_{\mathrm{MoCo}(i)} := \sum_{i} \left(\mathsf{X}_{\mathrm{PCF}(j)}^{-1} p \right) \circ \mathsf{T}_{j}^{i}$$

Ground truth in end-exhale

Backprojection on (straight) acquisition lines of a projection acquired <u>in end-inhale</u>

Warped backprojection

A Standard Motion Estimation and Compensation Approach (sMoCo)

Motion estimation via standard 3D-3D registration

Has to be repeated for each reconstructed phase

Gated 4D CBCT sMoCo Image: SMoCo Image: SMoCo

 Streak artifacts from gated reconstructions propagate into sMoCo results

Li et al., "Enhanced 4D cone-beam CT with inter-phase motion model," Med. Phys. 51(9), 3688-3695 (2007).

A Cyclic Motion Estimation and Compensation Approach (cMoCo)

• Motion estimation only between adjacent phases – All other MVFs given by concatenation

Displacement curve of a fictitious pixel over complete respiratory cycle

w/o temporal constraintswith temporal constraints

- Incorporate additional knowledge
 - A priori knowledge of quasi periodic breathing pattern
 - Non-cyclic motion is penalized
 - Error propagation due to concatenation is reduced

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, "Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy," Med. Phys. 39(12), 7603-7618 (2012). Reported at CT-Meeting 2012, MIC 2012, RSNA 2012.

Angular Sampling Artifact Model

- Create second series of images with sparse-view artifacts but without breathing motion
- Eliminate breathing motion information
 - Threshold-based segmentation of 3D CBCT
- Simulate measurement and reconstruction process
 - Forward projection of segmented image
 - Backprojection at same angles as for gated 4D CBCT

3D CBCT

Segmented Image

Angular Sampling Artifact Model

- Create second series of images with sparse-view artifacts but without breathing motion
- Eliminate breathing motion information
 - Threshold-based segmentation of 3D CBCT
- Simulate measurement and reconstruction process
 - Forward projection of segmented image
 - Backprojection at same angles as for gated 4D CBCT

Gated 4D CBCT

4D Artifact Images

Motion Estimation using an Angular Sampling Artifact Model

Simulated Data – Results

Simulated Data – Results

acMoCo Artifact Model-Based Motion Compensation

Patient Data – Results

3D CBCT Standard Gated 4D CBCT Conventional Phase-Correlated acMoCo Artifact Model-Based Motion Compensation

Summary

- Severe sparse-view artifacts deteriorate image quality of conventional phase-correlated images
- Standard deformable 3D-3D registration is sensitive to these artifacts
- Highly decreased sensitivity to sparse-view artifacts by combination of cyclic registration and artifact model
- Motion-compensated image reconstruction using MVFs obtained by <u>combination of cyclic registration</u> <u>and artifact model</u> is suitable for application in IGRT

Thank You!

This study was supported by a research grant from Varian Medical Systems, Palo Alto, CA.

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

