SPIE 2014: Session 4, 9033-17

Removing Blooming Artifacts with Binarized Deconvolution

<u>Christian Hofmann¹, Michael Knaup²</u> and Marc Kachelrieß²

¹Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany

Cardiac CT – Motivation

- The coronary artery disease is still one of the most dominating causes of death in the western world.
- Cardiac CT is a desirable non-invasive alternative to invasive coronary angiography.
- Imaging system limits spatial resolution
 → PSF of the system generates blooming
 artifacts which reduce the contrast at high
 contrast structures.
- Blooming artifacts arising from calcified vessels lead to an over-estimation of the degree of luminal narrowing and to loss of the plaque's morphology.

Aim

- To estimate the morphology and the CT-value of the calcification without the adverse effect of the PSF of the imaging system by an image based deconvolution approach.
- The proposed method estimates the correct CT-value and the correct morphology of the calcification by assuming that one calcification consists of a compact homogeneous region with a constant CT-value.

C = 0 HU, W = 1000 HU

Basic Idea of Binarized Deconvolution

 In CT the formation of the observed image g can be described as a convolution of the real image f with the PSF K of the imaging system:

$$K \cdot f = g$$

The observed image g can be split into background g_{BG} and the calcification plus blooming g_C so that:

 $\boldsymbol{g}_{\mathrm{C}} = \boldsymbol{g} - \boldsymbol{g}_{\mathrm{BG}}$

 The proposed method makes use of the assumption that a single calcification g_C consists of a continuous region with almost constant CT-value:

$$K \cdot f_{B} \cdot c = g_{C}$$
 f_{B} = binary image \rightarrow shape
 c = factor for CT-value

Task: find f_B and c.

Binarized Deconvolution – Workflow

dkfz.

Separation of Calcification and Background

- Detect and select calcification
 - Manually chosen (to date)
- Upsample to fine voxel grid ($\Delta x = \Delta y = 0.1$ mm)
 - For a more exact extraction and deconvolution
- Extract calcification and blooming
 - Thresholding approach proposed by Steckmann et al¹.
- Calculate background g_{BG} by inpainting the thresholded image
 - Erosion-based method which uses the local surroundings of the borders of the defect which are to be continued into the defect region.
- Subtract g_{BG} from g to obtain calcification + blooming: $g_{C} = g - g_{BG}$

[1]Steckmann,S. and Kachelrieß M., "<u>Blooming artifact reduction for cardiac CT</u>," Nuclear Science Symposium Conference Record (NSS/MIC), 2030–2035 (Oct. 2010).

Combination of Calcification and Background

- The factor for the CT-value c* has to be background corrected due to the subtraction of the background before.
- For that we calculate the mean of the set of voxels of the inpainted image g_{BC} which corresponds to the blooming corrected calcification.
- Add thresholded image and f_B·c'.
- Choose the blooming corrected f_{QB} region best solving the cost function:

 $\boldsymbol{f}_{\Omega_{\mathrm{B}}} = \underset{f_{j}, j \in \Omega_{\mathrm{B}}}{\operatorname{arg min}} ||\boldsymbol{K} \cdot (\boldsymbol{f} + \boldsymbol{f}_{\mathrm{B}}(t^{*}) \cdot \boldsymbol{c}' + \boldsymbol{f}_{\mathrm{BG}}) - \boldsymbol{g}||_{2}^{2} + \beta \mathrm{TV}(\boldsymbol{f}).$

 \rightarrow Here only voxel values $j \in \Omega_B$ are being updated.

Phantom with Calcified Vessels

- Blood vessels were simulated into the heart region of the Forbild thorax phantom and high density calcium deposits were simulated into the vessels.
- The center portion of large lesions is typically between 800 1400 HU.

Assessment of Image Quality

• Image quality was quantified by computing the normalized cross correlation with ground truth,

$$NCC = \frac{1}{L-1} \sum_{x,y \in \Omega} \frac{(f(x,y) - \bar{f})(g(x,y) - \bar{g})}{\sigma_f \sigma_g}$$

- » f = reconstructed image, g = ground truth
- » σ_f , σ_g = corresponding standard deviations
- » **Q** region for NCC analysis
- and with the root mean square deviation to the ground truth:

$$\text{RMSD} = \sqrt{\frac{1}{|\Omega|}} \sum_{x,y \in \Omega} (f(x,y) - g(x,y))^2.$$

 Estimated calcium size: voxels exceeding the threshold of 70 % of the CT-value of the calcification are counted as calcified voxels.

Compared Algorithms

• Ground truth:

Noise-free ten-fold spatial resolution analytical reconstruction of our analytical phantom.

- <u>FBP reference reconstruction:</u> Ram-Lak kernel (ramp filter till Nyquist frequency).
- <u>Richardson Lucy deconvolution (RL)¹</u>: Standard deconvolution technique (often used in CT literature).

$$oldsymbol{f}^{n+1} = oldsymbol{f}^noldsymbol{K}^T\left(rac{oldsymbol{g}}{oldsymbol{K}oldsymbol{f}^n}
ight)$$

- -g = image to be deconvolved
- K = convolution kernel
- K^T = transpose kernel
- fⁿ = result after iteration n
- Proposed binarized deconvolution (BD):

$$C(\boldsymbol{f}_{\mathrm{B}},c) = ||\boldsymbol{K}\cdot\boldsymbol{f}_{\mathrm{B}}\cdot c - \boldsymbol{g}_{\mathrm{C}}||_{2}^{2}$$

[1]Al-Ameen, et al., "Utilizing a Laplacian–Richardson Lucy procedure for deblurring CT medical images degraded by Gaussian blur," In proceeding of: 5th conference and exhibition on computer communication (Jul. 2012).

Simulation and Reconstruction Setting for Phantom Simulations

Rawdata:

- Siemens SOMATOM Definition Flash Geometry
- $N_{360} = 1160$
- Monoenergetic x-ray spectrum with 80 keV
- 30 HU Poisson noise (in water equivalent tissue)
- **Reconstruction setting:**
- Field of view = 250 mm
- $N_x = N_y = 512 \rightarrow \Delta x = \Delta y = 0.5 \text{ mm}$

BD Algorithm:

- For the deconvolution the PSF was approximated as a spatial invariant Gaussian function
- The PSF is determined with a delta object, simulated into the phantom: FWHM_{FBP} \approx 1.01 mm $\rightarrow \sigma_{FBP} \approx$ 0.43 mm

Ground truth (Calcification = 1400 HU)

Phantom Results

1400 HU pattern analyzed

- Reference reconstruction: FBP (Ram-Lak)
- Richardson Lucy (RL) deconvolution
- Binarized deconvolution (BD)

C = 0 HU, W = 1000 HU

Quantitative Results

Reconstruction Setting for the Patient Data

Rawdata:

- Siemens SOMATOM Definition Flash scanner
- Dual source spiral scan, retrospectively gated scan
- Scan parameters: $N_{360} = 1160$, tube voltage = 100 kV

Reconstruction setting:

- Reference reconstruction: EPBP¹
- Retrospective reconstruction, 70% R-R interval reconstruction
- Field of view = 250 mm
- $N_x = N_y = 512 \rightarrow \Delta x = \Delta y = 0.5 \text{ mm}$

BD algorithm:

- Estimate PSF in Reconstruction:
 - Measure several edge profiles an calculate averaged FWHM
 - d/dr (ESF(r)) = LSF(r) → FWHM by fitting Gaussian to the LSF
 - − FWHM ≈ 1.3 mm \rightarrow σ_{EPBP} ≈ 0.56 mm

^[1] Kachelrieß, M., Knaup, M., and Kalender, W., "Extended parallel backprojection for standard three dimensional and phase-correlated four-dimensional axial and spiral cone-beam CT with arbitrary pitch, arbitrary coneangle, and 100% dose usage," Med. Phys. 31, 1623–1641 (Jun. 2004).

Simple Calcification Patient Data

• The estimation of the calcification size and the degree of the luminal narrowing is now independent from the window level due to the removed blooming.

Multiple Calcifications Processed at Once

 The initial patient data results are promising, but a µ-CT study has to be done to verify the correctness of the CT-values and the morphology.

dkfz.

Summary & Conclusion

- The phantom study shows good results → the correct CT-value and the correct morphology of the calcification can be restored.
- The visibility of the calcification and its borderline to the lumen is independent from the window level.
- The patient data results are promising.
- A µ-CT study has to be done to verify the correctness of the CTvalues and the morphology and to tune the various parameters of the method.

Thank You!

This work was funded by the Deutsche Forschungsgemeinschaft DFG under grant KA 1678/3-1. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany. This presentation will soon be available at www.dkfz.de/ct.

