Artifact-Resistant Motion-Compensated On-Board Cone-Beam CT Imaging

Marcus Brehm¹, Pascal Paysan², and Marc Kachelrieß^{1,3}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Varian Medical Systems Imaging Laboratory, Baden-Dättwil, Switzerland ³Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany

Slowly Rotating CBCT Devices

- Image-guided radiation therapy (IGRT)
 - CBCT imaging unit mounted on gantry of a LINAC treatment system
 - E.g. used for patient positioning
- Maximum gantry rotation speed of 6° per second
- Breathing cycle about 2 to 5 seconds
 - i.e. 12 to 30 respirations per minute (rpm) and thus per scan

⇒ Account for respiratory motion!

Retrospective Gating

Without gating (3D): Motion artifacts

With gating (4D): Sparse-view artifacts

Measured projections assigned to one phase bin

Prior Art in IGRT (Respiratory-Correlated Reconstructions)

- Respiratory gating and independent reconstruction
 - Sparse-view artifacts deteriorate image quality
 - » Streak artifacts and image noise
 - Increased patient dose required
- Dedicated acquisition techniques
 - Long acquisition times
 - Limited capability to reduce artifacts without increasing patient dose
- Adaptive respiratory-correlated reconstruction
 - Artifacts remain in area of interest subjected to motion
- Motion-compensated reconstruction
 - Necessary motion estimation requires (so far)
 - » increased patient dose,
 - » or additional knowledge, e.g. planning CT

Aim

- Provide high quality respiratory-correlated 4D volumes from on-board CBCT scans
 - Image quality comparable to that of motionless regions (e.g. neck)
- Do this with a standard acquisition protocol
- Do this without other prior information of higher temporal sampling such as a 4D planning CT
 - Account for inter-fractional variations in breathing motion

Results of recent publications from other groups

Desired Results

Motion Compensation (MoCo)

- Use all projection data for each phase to be reconstructed
 - Even those of other respiratory phase bins (100 % dose usage)
 - Compensate for motion applying motion vector fields (MVFs)
 - In our case MVFs are estimated from conventional gated reconstructions
- Use MVFs during reconstruction
 - Modified filtered backprojection
 - Backproject the sparse data along straight lines, then warp with respect to the MVFs

A Standard Motion Estimation and Compensation Approach (sMoCo)

 Motion estimation via standard 3D-3D registration

 Has to be repeated for each reconstructed phase

Streak artifacts from gated reconstructions propagate into sMoCo results

A Cyclic Motion Estimation and Compensation Approach (cMoCo)

- Motion estimation only between adjacent phases
 - All other MVFs given by concatenation

- Incorporate additional knowledge
 - A priori knowledge of quasi periodic breathing pattern
 - Non-cyclic motion is penalized
 - Error propagation due to concatenation is reduced

Angular Sampling Artifact Model

- Create second series of images with sparse-view artifacts but without breathing motion
- Eliminate breathing motion information
 - Threshold-based segmentation of 3D CBCT
- Simulate measurement and reconstruction process
 - Forward projection of segmented image
 - Backprojection at same angles as for gated 4D CBCT

3D CBCT

Segmented Image

Angular Sampling Artifact Model

- Create second series of images with sparse-view artifacts but without breathing motion
- Eliminate breathing motion information
 - Threshold-based segmentation of 3D CBCT
- Simulate measurement and reconstruction process
 - Forward projection of segmented image
 - Backprojection at same angles as for gated 4D CBCT

Gated 4D CBCT

4D Artifact Images

Motion Estimation using an Patient-Specific Artifact Model

(induced by artifacts only)

Patient Data - Results

3D CBCT sMoCo Gated 4D CBCT acMoCo **Standard** Conventional **Standard Motion Artifact Model-Based Phase-Correlated** Compensation **Motion Compensation**

Summary

- Severe sparse-view artifacts deteriorate image quality of conventional phase-correlated images.
- Standard deformable 3D-3D registration is sensitive to these artifacts.
- Highly decreased sensitivity to sparse-view artifacts by combination of cyclic registration and artifact model.
- Motion-compensated image reconstruction using MVFs obtained by combination of cyclic registration and artifact model appears to be suitable for application in IGRT.

Thank You!

This study was supported by a research grant from Varian Medical Systems, Palo Alto, CA.

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

