SPIE 2014: Session 5, 9033-25

A New Approach to Regularized Iterative CT Image Reconstruction

<u>Christian Hofmann¹, Michael Knaup²</u> and Marc Kachelrieß²

¹Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany

Why Iterative Reconstruction?

- Iterative image reconstruction promises to reduce image noise (and thus patient dose), to reduce artifacts, or to improve spatial resolution.
- Works for all geometries with only small adaptations.
- Allows to model any effect of the rawdata acquisition process.
- Allows to incorporate prior knowledge like image properties such as smoothness and edges (regularization).

Motivation

- Most common approach for regularization in iterative reconstruction:
 Cost function = Rawdata fidelity + Penalty term (1) + Penalty term (2) ...
- In general the penalty terms penalize strong variations between neighboring voxels → the stronger the regularization the stronger the resolution-noise trade-off → problematic at the resolution limit or when the contrast of details is in the range of the noise level.
- Often many regularization parameters have to be chosen carefully to avoid an artificial image impression or not to alter anatomical information.

Aim

- To propose a different approach to regularization in iterative reconstruction which can improve the resolution noise trade-off.
- Basis images are generated which emphasize certain image properties like high resolution or low noise, etc. (regularization is incorporated by these basis images into the reconstruction process).
- We want to find the voxel-wise combination of the basis images to generate an image with superior resolution, and lower noise to improve the resolution noise trade-off.

Alpha Image Reconstruction (AIR)

- Generate basis images \rightarrow regularization is incorporated into the • reconstruction by the basis images. (e.g. regularized / filtered reconstructions, reference FBP reconstructions)
- Find the voxel-wise combination of these basis images best representing • the real image by minimizing a cost function:

$$oldsymbol{f}_{\mathrm{AIR}} = \sum_{b=1}^{B} oldsymbol{lpha}_b \circ oldsymbol{f}_b \ ,$$

$$rgmin_{oldsymbol{lpha}} ~~ ||oldsymbol{R}\cdot\left(\sum_{b=1}^{B}oldsymbol{lpha}_b\circoldsymbol{f}_b
ight)-oldsymbol{p}||_{oldsymbol{W}}^2+U(oldsymbol{lpha})$$

- $\alpha_{h} =$ weighting images
- $f_h = basis images$
- $\alpha \circ f =$ Hadamard product $\rho =$ rawdata
- -B = Number of basis images $-U(\alpha)$ = regularization /
- -R = Radon transform

- constraints for α
- -W = statistical weights
- Determine the α images by minimizing the above cost function • \rightarrow the minimum is reached when the weighting images $\alpha_{\rm h}$ will have large contributions in regions of the corresponding f, which highly correlate with the rawdata fidelity and low weighting otherwise.

Alpha Image Reconstruction (AIR)

 The regularization term is used to set certain constraints to the weighting images α_b such as continuity and smoothness:

- (1) Total variation¹: smoothness in a_b.
- (2) Penalty which controls the average contribution one basis image has to the final result. We use c_b = 1/B → homogeneous regions without differences with respect to the rawdata fidelity are averaged.
- β and γ are trade-off parameters (chosen as small as possible).
- Overall cost function is stritcly convex \rightarrow a unique global minimum exists.

[1]L. Ouyang, et al., "Effects of the penalty on the penalized weighted least squares image reconstruction for low-dose CBCT." Phys. Med. Biol., vol. 56, no. 17, pp. 5535–5552, Sep. 2011

Phantom

- Analytical phantom
- Diameter of water cylinder = 160 mm
- High contrast (1000 HU) and low contrast (200 HU) resolution patterns (4.2 – 14.5 LP/cm)
- Low contrast disk (100, 50, 25 HU)
- **D** = ROI for noise measurements
- A, B, C = ROIs for CNR measurements

Assessment of Image Quality

 Image quality was quantified by computing the normalized cross correlation with ground truth,

$$NCC = \frac{1}{L-1} \sum_{x,y \in \Omega} \frac{(f(x,y) - \bar{f})(g(x,y) - \bar{g})}{\sigma_f \sigma_g}$$

- f = reconstructed image, g = ground truth
- $-\sigma_f, \sigma_g = corresponding standard deviations$
- Ω region for NCC analysis
- The resolution line patterns are analyzed using the contrast factor:
 - $CF = \frac{MeanMax(i) MeanMin(i)}{B A}$
 - MeanMax(i) = mean of three inner maxima of resolution pattern i
 - MeanMin(i) = mean of three inner minima of resolution pattern i
 - **B** = 1000 HU, **A** = 0 HU

Compared Algorithms

- Ground truth:
 - noise-free ten-fold spatial resolution analytical reconstruction of our analytical phantom
- <u>FBP:</u>
 - Ram-Lak kernel (ramp filter till Nyquist frequency)
- <u>PWLS with TV:</u> $C_{\text{PWLSTV}}(\boldsymbol{f}) = ||\boldsymbol{R} \cdot \boldsymbol{f} \boldsymbol{p}||_{\boldsymbol{W}}^2 + \eta TV(\boldsymbol{f})$
 - PWLS (Penalized weighted least squares): most attention in penalized CT literature
 - TV: also most attention in CT literature and only few parameters → results easy to comprehend etc.
- <u>AIR:</u>

$$C(\boldsymbol{\alpha}) = || \boldsymbol{R} \cdot \left(\sum_{b=1}^{B} \boldsymbol{\alpha}_{b} \circ \boldsymbol{f}_{b} \right) - \boldsymbol{p} ||_{\boldsymbol{W}}^{2} + U(\boldsymbol{\alpha})|$$

– Two basis images:

 $f_1 = FBP, f_2 = smooth FBP (FBP + Gaussian filtering)$

- Three basis images + anisotrop bilateral filtering¹: $f_1 = FBP, f_2 = FBP$ bilateral filtered, $f_3 = sharp FBP$ bilateral filtered

Simulation and Reconstruction Setting for Phantom Simulations

Rawdata:

- Siemens SOMATOM Definition Flash Geometry
- $N_{360} = 1160$
- Poisson noise was simulated resulting in 30 HU noise in the FBP reconstruction in water-equivalent tissue.
- Monochromatic rawdata at 80 keV

Reconstruction setting:

- Field of view = 200 mm
- $N_x = N_y = 512 \rightarrow \Delta x = \Delta y = 0.4 \text{ mm}$
- Algorithm parameters for the proposed method:
- $\beta = 0.001$, $\gamma = 0.02$, α initialized with zero
- Minimization of cost function: Gradient descent with backtracking line search
- *N*_{lter} = 500 (convergence: iterated until no significant changes during further iterations)

TWO BASIS IMAGES

- High weights in regions which highly correlate with the rawdata fidelity
- Low weights in regions with low correlation
- Regions which have the same correlation with the rawdata are averaged

THREE BASIS IMAGES WITH BILATERAL FILTERING

- Low contrast detail information has the highest correlation with the ground truth in basis images f_1 and $f_2 \rightarrow$ weights are high in α_1 and α_2 .
- High contrast detail information has the highest correlation with the ground truth in basis images $f_3 \rightarrow$ weights are high in σ_3 .

Proposed method has the highest correlation with the ground truth:

 $\frac{\text{NCC}_{\text{FBP}}}{0.920} < \frac{\text{NCC}_{\text{PWLSTV}}}{0.955} < \frac{\text{NCC}_{\text{AIR}}}{0.971}$

PATIENT DATA

Rawdata:

- Siemens SOMATOM Definition
 Flash Scanner
- Sequence scan, single source
- Scan parameters: N₃₆₀ = 1160, tube voltage = 100 kV

Reconstruction setting:

- Field of view = 500 mm
- $N_x = N_y = 1024$ $\Rightarrow \Delta x = \Delta y = 0.5 \text{ mm}$

Parameters for proposed method:

- Same parameters as for the phantom
- AIR with three basis images and bilateral filtering

C = 0 HU, *W* = 1000 HU

Line profile through vertebra

Line profile through Rib

Summary & Conclusion

- In our experiments the AIR algorithm reduces noise by up to 50% and at the same time has the potential to improve the resolution.
- Any image filter or regularization approach can be used to generate the basis images which makes the method very flexible.
- Future research will be concerned with finding optimal choices for the basis images.
- Outlook Special application cardiac CT Basis images:
 - Sharp FBP to avoid blooming
 - FBP with high temporal resolution and low CNR
 - FBP with low temporal resolution and high CNR

Thank You!

This work was funded by the Deutsche Forschungsgemeinschaft DFG under grant KA 1678/3-1. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

This presentation will soon be available at www.dkfz.de/ct.

