Motion Compensation from Short-Scan Data in Cardiac CT

Juliane Hahn^{1,2}, Thomas Allmendinger¹, Herbert Bruder¹, and Marc Kachelrieß²

> ¹Siemens Healthcare GmbH, Forchheim, Germany ²German Cancer Research Center (DKFZ) Heidelberg, Germany

Motivation

- Cardiac CT imaging is routinely practiced for the diagnosis of cardiovascular diseases like coronary artery disease.
- The imaging of small and fast moving vessels places high demands on the spatial and temporal resolution of the reconstruction.
- Insufficient temporal resolution leads to motion artifacts, whose occurrence might require a second scan increasing the dose applied to the patient.

Temporal Resolution in Cardiac CT

- For the RCA mean velocities \overline{v} varying between $70\,\rm{mm/s}$ and $35\,\rm{mm/s}$ have been measured.1,2,3,4)
- Assume $ar{v} pprox 50\,\mathrm{mm/s}$ constant during scan

	Single source	Dual source
t _{rot}	250 ms	250 ms
t _{res}	125 ms	63 ms
Displacement	6.2 mm	3.1 mm

Large displacement for an object of ~ 1-5 mm diameter.
Occurrence of strong motion artifacts especially in case of single source systems!

 ¹⁾Husmann et al. Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate - Implications for CT Image Reconstruction. Radiology, Vol. 245, Nov 2007.
²)Shechter et al. Displacement and Velocity of the Coronary Arteries: Cardiac and Respiratory Motion. IEEE Trans Med Imaging, 25(3): 369-375, Mar 2006
³)Vembar et al. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.
⁴)Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology, Vol. 216, Aug 2000.

Aim

- Increase the temporal resolution in cardiac CT in the region of the coronary arteries for data acquired with single source systems.
- Especially beneficial in cases of patients with high or irregular heart rates or non-optimally chosen gating positions.
- In view of dose optimized scan protocols, we want to utilize only the data needed for a single short scan reconstruction.

Non-optimally chosen gating position

SIEMENS

"Best phase"

C = 300 HU; *W* = 1500 HU

Initialization of the Algorithm

Create 2*K* + 1 partial angle images (PAIs) $f_k(m{r})$ **Initial reconstruction** K = 15 $f_{-K}(\boldsymbol{r})$ $f_0(\boldsymbol{r})$ Segmentation $f_K(\boldsymbol{r})$ RO $t_{\rm res} \approx \frac{t_{\rm rot}/2}{(2K+1)/2} \approx 10 \,\mathrm{ms}$ $t_{\rm res} \approx \frac{t_{\rm rot}}{2} \approx 150 \,{\rm ms}$

Algorithmic Concept

Data courtesy of Dr. Stephan Achenbach

SIEMENS

• <u>Motion model</u>: Motion is modeled by a motion vector field (MVF) s(r, t) subsampled in time and space, whose time dependence we parameterize by a low degree polynomial ($P \le 2$)

$$\boldsymbol{s}(\boldsymbol{r},t) = \sum_{p=1}^{P} \boldsymbol{a}_{p}(\boldsymbol{r})(t-t_{0})^{p}$$

Motion compensation (MoCo): Apply MVF on 2K + 1 PAIs $f_k(r)$ and add them to obtain the motion-compensated reconstruction

$$f_{\text{MoCo}}(\boldsymbol{r}, \boldsymbol{s}) = \sum_{k=-K}^{K} f_k(\boldsymbol{r} + \boldsymbol{s}(\boldsymbol{r}, t_k))$$

Algorithmic Concept

<u>Motion estimation</u>: The MVFs are subject to the cost function optimization:

 $\hat{\boldsymbol{s}} = \arg \min_{\boldsymbol{s} \in \mathbb{R}^{PND}} E,$

• As image artifact measuring cost function, we chose the image's entropy.

High entropy

Low entropy

For 3D MoCo, N = 25, P = 2 \rightarrow 150 parameter

Phantom Measurement Setup

d = 1.5 mm2.5 mm 3 mm **Stents Calcified plaques** 50 HU @ 120 kV

Phantom Measurement Setup

Data acquisition

Low pitch spiral scanning: $p \approx 0.2$ \rightarrow Reconstruction of multiple cardiac phases possible. Rotation Time t_{rot} = 250 ms Heart rate 60, 70, 90 bpm

Reconstruction

For the reconstruction, only the data acquired by detector A have been used!

For the evaluation of the algorithm we choose P = 1.

Results Phantom

70 bpm

SIEMENS

C = 0 HU; W = 2000 HU

Results Phantom

70 bpm

C = 0 HU; W = 2000 HU

Results Clinical Case 1

t_{res} = 143 ms, HR = 72 bpm, c = 70% RR

Standard reconstruction

MoCo reconstruction

Phase shifted by 5% from the best phase to obtain an image with motion artifacts

SIEMENS

C = 400 HU; *W* = 1500 HU

Results Clinical Case 2

t_{res} = 143 ms, HR = 70 bpm, c = 50% RR

Standard reconstruction

MoCo reconstruction

C = 400 HU; W = 1500 HU

Results Clinical Case 2

t_{res} = 143 ms, HR = 70 bpm, c = 60% RR

Standard reconstruction

MoCo reconstruction

C = 400 HU; *W* = 1500 HU

Summary and Conclusion

- We see an increased sharpness of the coronary arteries in cardiac phases featuring motion artifacts of different severity.
- The computational effort is potentially low because of the simple way the MVFs are applied.
- Potential applications are:
 - Dual source high pitch scan protocols at high heart rates
 - Single source cardiac CT at high heart rates
- More on MoCo:
 - Rank, Kachelrieß. Respiratory MoCo for Simultaneous PET/MR. Mo, Nov 30, 3:10 PM, Room S403A
 - Sauppe, Kachelrieß. Respiratory and Cardiac 5D MoCo for CBCT. Wed, Dec 2, 11:10 AM, Room S403B

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This study was supported by Siemens Healthcare GmbH. This presentation will soon be available at www.dkfz.de/ct.

