Automatic Intrinsic Cardiac and Respiratory Gating from Cone-Beam CT Scans of the Thorax Region

Andreas Hahn¹, Sebastian Sauppe¹, Michael Lell², and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Erlangen–Nürnberg, Erlangen, Germany

Slowly Rotating CBCT Devices

- Image-guided radiation therapy (IGRT)
 - CBCT imaging unit mounted on gantry of a LINAC treatment system
 - Accurate information about patient motion for precise radiation therapy
- Slow gantry rotation speed of 6° per second (60 s/360°)
 - Much slower than clinical CT devices (0.25 s /360°)
- <u>Breathing</u> about 10 to 30 rpm (respirations per minute) and thus per scan
- <u>Heartbeat</u> about 60-100 bpm (beats per minute)

Projections that show cardiac and respiratory motion

External Respiratory/Cardiac Signal Acquisition

Amplitude Gating

- Motion bins are determined by amplitude
- Assumption:
 - Good correlation between amplitude signal and lung expansion
- Advantages:
 - Amplitude reflects lung expansion
- Disadvantages:
 - Depending on the implementation not all phases may contain the same number of projections

Phase Gating

- Motion bins are determined by phase, i.e. relative distance between peaks
- Advantages:
 - Only peaks need to be known
 - Depending on the implementation the number of projections per phase may be more or less constant
- Disadvantages:
 - Does not reflect true expansion of the lung/heart

Phase Gating

- Motion bins are determined by phase, i.e. relative distance between peaks
- Advantages:
 - Only peaks need to be known
 - Depending on the implementation the number of projections per phase may be more or less constant
- Disadvantages:
 - Does not reflect true expansion of the lung/heart

Here we only use phase gating since the algorithm proposed later only determines peaks!

Gated 4D Reconstruction

GT Ground Truth **3D CBCT** Standard Gated 4D CBCT Conventional Phase-Correlated acMoCo¹ Artifact Model-Based Motion Compensation

1: M. Brehm, S. Sawall, J. Maier, S. Sauppe, and M. Kachelrieß. Cardiorespiratory motioncompensated micro-CT image reconstruction using an artifact model-based motion estimation. Med. Phys. 42(4):1948-1958, April 2015

C=-200 HU, *W*=1400 HU

Provide intrinsic respiratory and cardiac motion parameters for scans

- where no external signal is available
- or where the gating signal is corrupted
- No user input is required.

Prior Art

	Method	Respiratory Gating	Cardiac Gating	Fully Automatic	СВСТ	Spiral CT
[1]	Kymogram detection	X	\checkmark	√	X	\checkmark
[2]	Intrinsic gating for small animal CT	\checkmark	\checkmark	X	\checkmark	X
[3]	Fully automated gating for small animal CT	\checkmark	\checkmark	√	\checkmark	X
[4,5,6]	Intrinsic respiratory gating for small animal CT	\checkmark	x	x	\checkmark	x

[1] Marc Kachelrieß, Dirk-Alexander Sennst, Wolfgang MaxImoser, and Willi A Kalender. *Kymogram Detection and Kymogram-Correlated Image Reconstruction from Subsecond Spiral Computed Tomography Scans of the Heart*, Med. Phys. 29(7): 1489-1503, July 2002

[2] Dinkel J, Bartling SH, Kuntz J, Grasruck M, Kopp-Schneider A, Iwasaki M, Dimmeler S, Gupta R, Semmler W, Kauczor HU, Kiessling F. *Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging*, Circ Cardiovasc Imaging 1(3):235-43, Nov 2008

[3] J Kuntz, J Dinkel, S Zwick, T Bäuerle, M Grasruck, F Kiessling, R Gupta, W Semmler and S H Bartling. Fully automated intrinsic respiratory and cardiac gating for small animal CT, PHYSICS IN MEDICINE AND BIOLOGY

55(7):2069-85, April 2010 [4] T. H. Farncombe. Software-based respiratory gating for small animal cone-beam CT, Med. Phys. 35, 1785, 2008 [5] Bartling S H, Dinkel J, Stiller W, Grasruck M, Madisch I, Kauczor H U, Semmler W, Gupta R and

Kiessling F. Intrinsic respiratory gating in small-animal CT, Eur. Radiol. 18 1375-84, 2008

[6] Jicun Hu, Steve T. Haworth, Robert C. Molthen, Christopher A. Dawson. *Dynamic Small Animal Lung Imaging Via a Postacquisition Respiratory Gating Technique using Micro-Cone Beam Computed Tomography*, Academic Radiology Volume 11, Issue 9, Pages 961–970, September 2004

Prior Art

	Method	Respiratory Gating	Cardiac Gating	Fully Automatic	СВСТ	Spiral CT
[7,8,9]	Local principal analysis method	\checkmark	X	 ✓ 	\checkmark	X
[8]	Amsterdam shroud method	\checkmark	X	\checkmark	\checkmark	X
[9]	Intensity analysis method	\checkmark	X	 ✓ 	\checkmark	X
[10]	Fourier-transform- based phase analysis method	\checkmark	x	✓	\checkmark	x
[11]	Local intensity feature tracking	\checkmark	X	\checkmark	\checkmark	X
	Proposed algorithm	\checkmark	\checkmark	\checkmark	\checkmark	X

[7] Zijp L, Sonke J J and Herk M. *Extraction of the Respiratory Signal from Sequential Thorax Cone-Beam x-ray Images*, Int. Conf. on the Use of Computers in Radiation Therapy, pp 507–9, 2004

[8] Van Herk M, Zijp L, Remeijer P, Wolthaus J and Sonke J. On-line 4D Cone Beam CT for Daily Correction of Lung Tumour Position during Hypofractionated Radiotherapy, Proc. Int. Conf. on the Use of Computers in Radiation Therapy (ICCR 07) p 6241[9], 2007

[9] Kavanagh A, Evans P M, Hansen V N and Webb S. *Obtaining Breathing Patterns from any Sequential Thoracic X-Ray Image Set*, Phys. Med. Biol. 54 4879, 2009

[10] Vergalasova I, Cai J and Yin F. A Novel Technique for Markerless, Self-Sorted 4D-CBCT: Feasibility Study, Med. Phys. 39 1442, 2012

[11] Salam Dhou, Yuichi Motai, and Geoffrey D. Hugo. *Local Intensity Feature Tracking and Motion Modeling for Respiratory Signal Extraction in Cone Beam CT Projections*, IEEE Transactions on (Volume:60, Issue: 2) Page(s): 332 – 342, 2012

Prior Art Intrinsic Gating for Small-Animal CT¹

1: Dinkel J, Bartling SH, Kuntz J, Grasruck M, Kopp-Schneider A, Iwasaki M, Dimmeler S, Gupta R, Semmler W, Kauczor HU, Kiessling F. Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging, Circ Cardiovasc Imaging 1(3):235-43, Nov 2008

Automatic Intrinsic Gating

• Idea:

- Rawdata-based motion estimation
- <u>Subtract static background</u> to improve estimation.
- <u>Identify optimal ROI</u> in projections that hold the motion information (i.e. diaphragm for respiratory phase and edge of the heart for cardiac phase).

Static background:

- Standard 3D volume still contains motion information.
- Reduce this information by applying a 3D median filter M.
- Forward projection of modified 3D volume contains less motion information.

Static Background

Rawdata used for motion estimation:

 $p' = p - \mathsf{X}\mathsf{M}\mathsf{X}^{-1}p$

• X is the forward projection, X⁻¹ the backprojection, M the Median filter.

Optimal ROI Identification

1. Define $(N_x \times N_y \times N_z)$ grid points in volume. Here: $2 \times 2 \times 2$

Images: C=0 HU; W=2500 HU

Optimal ROI Identification

- 1. Define $(N_x \times N_y \times N_z)$ grid points in volume. Here: 2×2×2
- 2. Each grid point can be traced in the rawdata after forward projection.

Images: C=0 HU; W=2500 HU

Optimal ROI Identification

- 1. Define $(N_x \times N_y \times N_z)$ grid points in volume. Here: $2 \times 2 \times 2$
- 2. Each grid point can be traced in the rawdata after forward projection.
- 3. Create rectangular ROI around grid point in projections. ROIs for the respiratory signal have to be larger since the respiratory motion is stronger than the cardiac motion.

Images: C=0 HU; W=2500 HU

Diaphragm

ROI Evaluation

Edge of the heart

1. Medium gray value in every ROI gives potential motion signal for every projection.

- 1. Medium gray value in every ROI gives potential motion signal for every projection.
- 2. Bandpass filter that allows between 10 and 30 rpm for respiratory or 40-120 bpm for cardiac gating.

- 1. Medium gray value in every ROI gives potential motion signal for every projection.
- 2. Bandpass filter that allows between 10 and 30 rpm for respiratory or 40-120 bpm for cardiac gating.
- 3. Peaks are determined automatically.

- 1. Medium gray value in every ROI gives potential motion signal for every projection.
- 2. Bandpass filter that allows between 10 and 30 rpm for respiratory or 40-120 bpm for cardiac gating.
- 3. Peaks are determined automatically.
- 4. ROI with most regular peaks distance is chosen as resulting signal.

RESULTS

Cardiac Simulation Setup

Ground truth:

- Thorax volume for 20 different, overlapping heart phases scanned with Siemens SOMATOM Force
- Artifical phase signal for 60/90/120 bpm
- Rawdata: Forward projection of respective volume
- 650 projections \rightarrow 90.90 ms per projection
- Detector: 1024×768 pixels
- Grid points to find best ROI: $12 \times 12 \times 10$
- Contrast agent

C=-100 HU, *W*=1500 HU

Data courtesy of Prof. Lell, Erlangen, Germany

Cardiac Simulation Results

• Difference Δp of intrinsically determined phase signal p_{intr} and the ground truth p_{GT} is calculated.

$$\Delta p = \sum_{n=1}^{N} (p_{\rm GT}(n) - p_{\rm intr}(n))$$

- Standard deviation σ of Δp is a measure of the error of the result.
- The error can also be expressed as a temporal error $t = \sigma / f_H$ or a number of projections N = t / (90.90 ms).

Cardiac Simulation Results

- Comparison to intrinsic gating for small animal CT¹.
- Both algorithms managed to find all peaks for 60 and 90 bpm.
- New algorithm yields better results. And it is fully automatic. And it can find respiratory and cardiac motion.

			Error in		
	<i>f</i> _н	$m{f}_{intr}$	σ	t	Projections
Proposed algorithm	60 bpm	60 bpm	3.66 %	36.63 ms	0.40
Small animal gating	60 bpm	60 bpm	4.95 %	49.50 ms	0.54
	90 bpm	90 bpm	5.83 %	38.89 ms	0.42
	90 bpm	90 bpm	6.41 %	42.73 ms	0.47
	120 bpm	120 bpm	7.20 %	36.00 ms	0.39
	120 bpm	118 bpm	10.13 %	50.65 ms	0.56

1: Dinkel J, Bartling SH, Kuntz J, Grasruck M, Kopp-Schneider A, Iwasaki M, Dimmeler S, Gupta R, Semmler W, Kauczor HU, Kiessling F. Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging, Circ Cardiovasc Imaging 1(3):235-43, Nov 2008

Patient Data

- 60 s scan time with Varian TrueBeam
- 650 projections
- Detector: 1024×768 pixels
- No contrast agent
- Ground truth:
 - External respiration signal available
 - Cardiac signal from manual evaluation of projections
- Grid points to find best ROI : 4 \times 4 \times 4 and 12 \times 12 \times 10 for respiratory and cardiac gating respectively

Patient Data Results

• New algorithm performs better for both respiratory and cardiac gating. And it is fully automatic.

			Error in		
	f _R orf _H	$m{f}_{intr}$	σ	t	Projections
Proposed algorithm	11 rpm	11 rpm	3.30 %	180.36 ms	1.98
imall animal gating	11 rpm	11 rpm	3.60 %	196.36 ms	2.13
	51 bpm	51 bpm	11.20 %	131.76 ms	1.43
	51 bpm	57 bpm	25.49 %	299.88 ms	3.30

5D MoCo Results¹

20 respiratory phases of 10% width, 10 cardiac phases of 20% width

2% dose usage

100% dose usage

100% dose usage

1: Sebastian Sauppe, Andreas Hahn, Marcus Brehm, Pascal Paysan, Dieter Seghers, and Marc Kachelrieß. Respiratory and Cardiac Motion-Compensated 5D Cone-Beam CT of the Thorax Region, SPIE Medical Imaging 2016

Conclusions

- The algorithm is suited to obtain a respiratory and cardiac phase signal where no external signal is given.
- It is fully automatical.
- More patients have to be evaluated to assess the robustness of the algorithm.

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. The study was supported by the Deutsche Forschungsgesellschaft (DFG) under grant No. KA-1678/13-1. Parts of the simulation and reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.