Application of MR-based Joint Estimation of Attenuation and Activity Distributions to Clinical non-TOF PET/MR

<u>T. Heußer</u>¹, C. M. Rank¹, M. T. Freitag¹, A. Dimitrakopoulou-Strauss¹, H.-P. Schlemmer¹, T. Beyer², and M. Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria

Introduction

- Motivation
 - Standard MR-based attenuation correction (AC) neglects bone attenuation and thus underestimates the activity distribution.
- Aim
 - Improve AC for non-TOF PET/MR.
- Proposed algorithm
 - Extension of the maximum-likelihood reconstruction of attenuation and activity (MLAA)^[1] for non-TOF PET/MR, called MR-MLAA.

MR-MLAA^[1]

- Joint estimation of attenuation and activity
 - Using PET emission data
 - Incorporating MR-based prior information

Log-likelihood

- Iterative approach
 - Update attenuation and activity in an alternating manner
- Cost function

$$C(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \underline{L(\boldsymbol{\lambda}, \boldsymbol{\mu})} + \underline{L_{\mathrm{S}}(\boldsymbol{\mu})} + L_{\mathrm{I}}(\boldsymbol{\mu})$$

 $\lambda = activity$ $\mu = attenuation$

Intensity prior L

 Voxel-dependent Gaussian-like probability distribution of predefined attenuation coefficients, e.g., for soft tissue, air, bone

Prior terms

- Derived from diagnostic T1-weighted MR image

Intensity Prior L₁

 $L_{\mathrm{I}}(\boldsymbol{r}) = \omega(\boldsymbol{r})\beta_{\scriptscriptstyle\mathrm{ST}}L_{\scriptscriptstyle\mathrm{ST}} + (1-\omega(\boldsymbol{r}))\beta_{\scriptscriptstyle\mathrm{AB}}L_{\scriptscriptstyle\mathrm{AB}}$

Experiments

- Clinical non-TOF ¹⁸F-FDG-PET/MR data of the head region acquired with a Siemens Biograph mMR
- Perform OSEM reconstructions using
 - 3 iterations
 - 21 subsets
 - Gaussian post-smoothing (σ = 2.0 mm)
- Attenuation correction
 - MRAC: standard MR-based AC
 - MR-MLAA: proposed method
 - CTAC: CT-derived AC

Results: Patient 1

Results: Patient 2

Conclusion

- MR-MLAA reduces activity underestimation compared to standard MR-based AC.
- Five patients, activity evaluated in full brain:
 - MRAC: 10.7 % activity underestimation
 - MR-MLAA: 3.4 % activity underestimation

Drawbacks

- Local activity over- or underestimation due to tissue misclassifications (air/bone)
- Increased computational demand due to iterative approach

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

This work was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany.

Parts of the reconstruction software RayConStruct-IR were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

