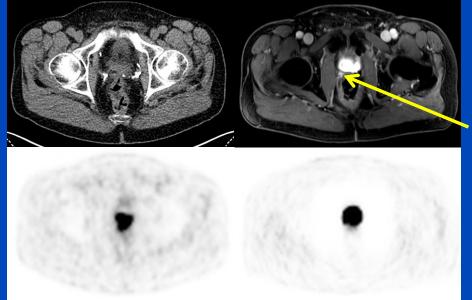
The Halo-Artifact in ⁶⁸Ga-PSMA-PET/MR: Studies Using Phantom and Clinical Data

<u>Thorsten Heußer</u>, Philipp Mann, Martin Schäfer, Antonia Dimitrakopoulou-Strauss, Marc Kachelrieß, Heinz-Peter Schlemmer, and Martin T. Freitag

German Cancer Research Center (DKFZ), Heidelberg, Germany



Motivation

- Prostate-specific membrane antigen (PSMA)
 - PET targeting PSMA is used to detect recurrent prostate cancer
- ⁶⁸Ga-PSMA imaging
 - Key application for hybrid PET/MR imaging?
- Photopenic artifacts ('halo')

 May impair PET image quality **PET/CT**

PET/MR

recurrent prostate carcinoma

• Investigate the halo-artifact in ⁶⁸Ga-PSMA PET/MR

- performing phantom measurements.
- evaluating clinical data.
- Deduce guidelines which help to avoid the occurrence of halo-artifacts.
- Provide workaround techniques effectively reducing the size of the halo-artifact.

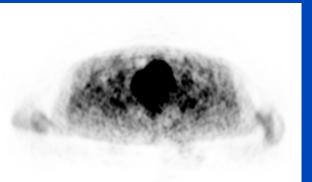
Devices and Software

Devices

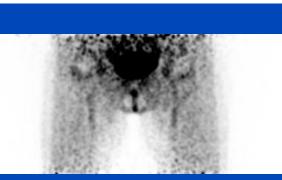
- Siemens Biograph mMR (model number 2008)
- Siemens Biograph mCT (model number 1104)

Software

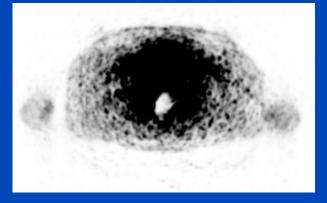
- Siemens e7tools offline software package
 - » mMR: version VA20
 - » mCT: version VG40

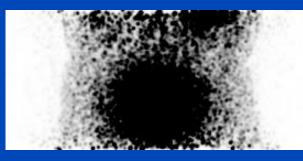

Reconstruction

- Ordinary-Poisson OSEM
 - » Accounting for normalization, randoms, scatter, and attenuation
 - » *N*_{iter} = 3
 - » *N*_{sub} = 21


¹⁸F-FDG vs. ⁶⁸Ga-PSMA Without Scatter Correction

¹⁸F-FDG

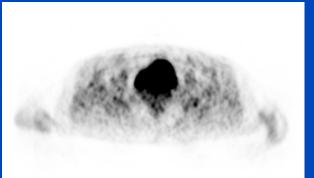

4.0


0.0 [kBq/mL]

248 MBq 85 min p.i.

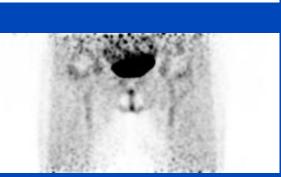
68Ga-PSMA

144 MBq 104 min p.i.

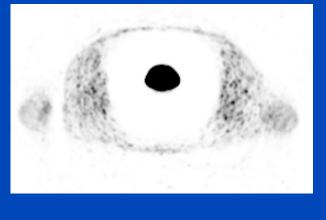

0.6

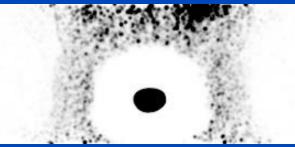
0.0 [kBq/mL]

dk


¹⁸F-FDG vs. ⁶⁸Ga-PSMA With Scatter Correction

¹⁸F-FDG

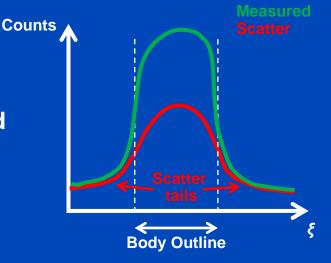

4.0


0.0 [kBq/mL]

248 MBq 85 min p.i.

⁶⁸Ga-PSMA

144 MBq 104 min p.i. 0.0 [kBq/mL]

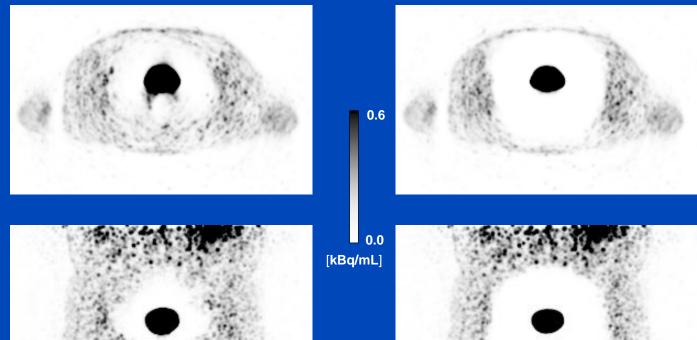

dkfz.

Single Scatter Simulation (SSS)¹

- Scatter estimation is based on SSS
- Relative version
 - Estimated scatter is scaled to fit the 'scatter tails'
- Absolute version
 - Estimated scatter is intrinsically scaled
- Default parameters

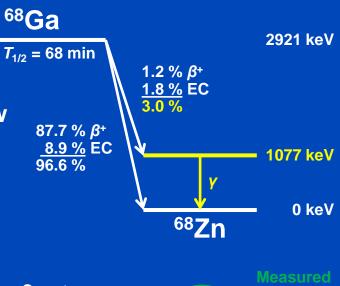
....

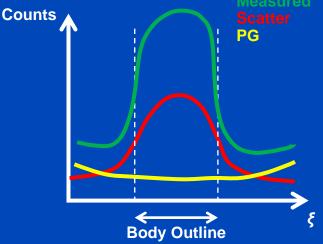
- No prompt gamma correction (PGC) applied
- Maximum scatter fraction MaxSF = 75 %



Single Scatter Simulation (SSS) Absolute vs. Relative SSS

Absolute SSS


Single Scatter Simulation (SSS) Prompt Gamma Correction (PGC)


Prompt gammas

- within coincidence timing window
- may fall within energy acceptance window
- may produce valid coincidence events
- result in an approximately homogeneous background activity distribution

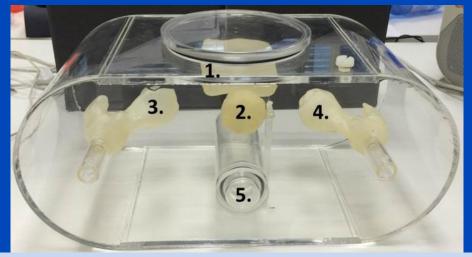
• Prompt gamma correction^{1,2}

- Include estimation of prompt gamma distribution into scatter correction
- Reduces scatter overestimation
- Has been shown to reduce the halo around the kidneys in ⁶⁸Ga-PSMA-PET/CT²

B. J. Beattie, R. D. Finn, D. J. Rowland, and K. S. Pentlow, "Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays," *Med. Phys.* 30(9), 2410-23 (2003).
 I. Hong, H. Rothfuss, C. Michel, and M. Casey, "Prompt Gamma Correction on Ga-68 PSMA PET Studies," *IEEE Med. Img. Conf. Rec.* (2015).

Single Scatter Simulation (SSS) Maximum Scatter Fraction (MaxSF)

- MaxSF gives the maximum allowed scatter-toprimary ratio
- Default value: MaxSF = 75 %
- Typical scatter fraction in whole-body PET/MR scan: SF ≈ 30-50 %¹
- Does decreasing MaxSF from 75 % to 40 % reduce the halo without introducing new artifacts?

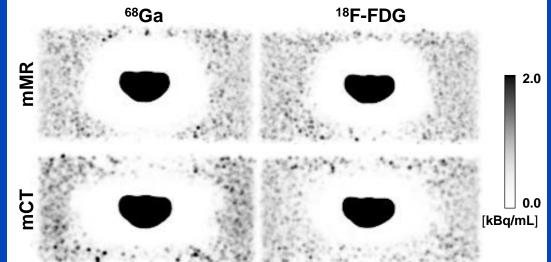

Phantom Experiments

Dedicated pelvis phantom¹

- Background: Plastic box filled with water (≈ 11 L)
- Bladder: Bladder insert filled with water (≈ 80 mL)

Data acquisition

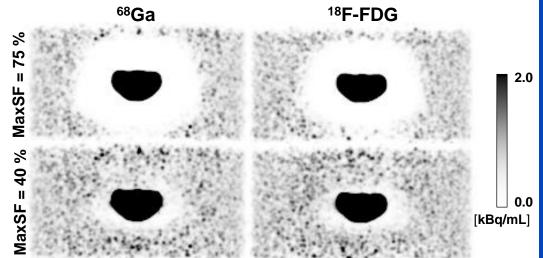
- 10⁷ events acquired during each measurement
- Attenuation and scatter correction based on CT-derived attenuation map (plastic box not visible in MR-based attenuation map)


[1] P. Mann, T. Heußer, H. de las Heras Gala, R. Weigel, M. Kachelrieß, and P. Bachert, "A hybrid imaging phantom for quality assurance and research," *RSNA Scientific Assembly and Annual Meeting* (2015).

Phantom Experiments ⁶⁸Ga vs. ¹⁸F-FDG

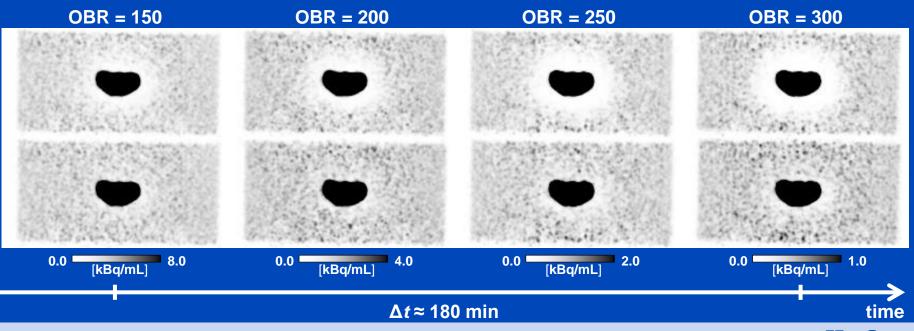
- ⁶⁸Ga or ¹⁸F-FDG
- Administered activity
 - Bladder: 30.0 MBq
 - Background: 5.3 MBq
- Resulting organ-tobackground ratio: OBR ≈ 800

- Scan with mMR and mCT
- Use absolute SSS
- No PGC
- MaxSF = 75 %



Phantom Experiments Reducing MaxSF

- ⁶⁸Ga or ¹⁸F-FDG
- Administered activity
 - Bladder: 30.0 MBq
 - Background: 5.3 MBq
- Resulting organ-tobackground ratio: OBR ≈ 800


- Scan with mMR
- Use absolute SSS
- No PGC

Phantom Experiments Dual Tracer Approach

- Background: ⁶⁸Ga (33 MBq, T_{1/2} = 68 min)
- Bladder: ¹⁸F-FDG (23 MBq, T_{1/2} = 110 min)
- Allows for a time-dependent OBR
- OBR doubles every Δt ≈ 180 min

%

Patient Data

• 25 ⁶⁸Ga-PSMA PET/MR patients

- Administered activity: 213 ± 66 MBq
- Acquisition time: 119 ± 44 min p.i.
- Arms down

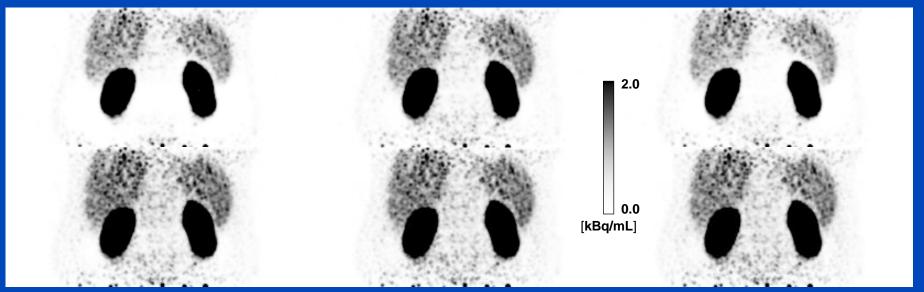
Scatter Correction (SC)

- Relative or absolute single scatter simulation (SSS)
- Maximum scatter fraction MaxSF = 75 % or 40 %
- ⁶⁸Ga Prompt Gamma Correction (PGC) off/on (for relative SSS only)

No SC

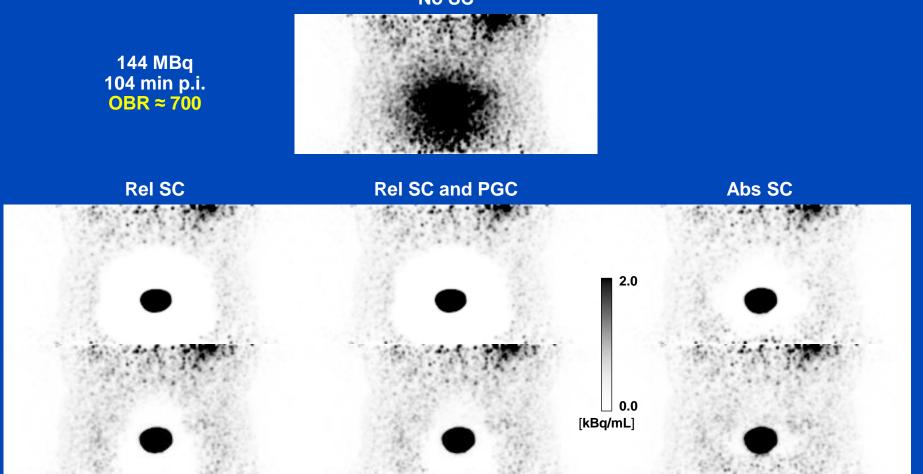
160 MBq 128 min p.i. OBR ≈ 70

Rel SC


75 %

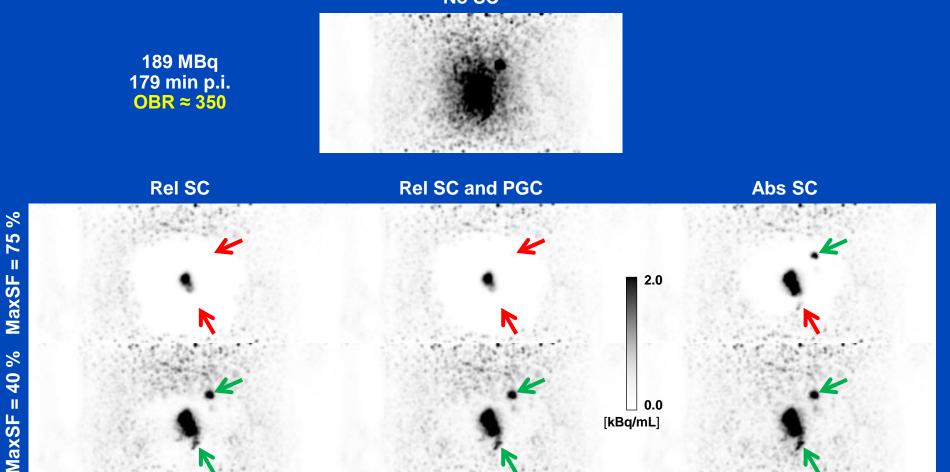
MaxSF =

MaxSF = 40 %


Rel SC and PGC

Abs SC

No SC


75 %

MaxSF =

MaxSF = 40 %

No SC

MaxSF =

Patient Data Results

- 25 ⁶⁸Ga-PSMA PET/MR patients
- Investigate halo around bladder
 - Halo present or not?

	no Halo	Halo
Relative SSS (MaxSF = 75 %)	5	20
Absolute SSS (MaxSF = 75 %)	17	8
Relative SSS (MaxSF = 40 %)	21	4
Absolute SSS (MaxSF = 40 %)	24	1

Summary

Phantom experiments

- Size of halo increases with increasing OBR.
- No significant differences between PET/MR and PET/CT.
- Prompt gammas do not seem to be the (main) reason for halo artifact.
- Decreasing the maximum scatter fraction to MaxSF = 40 % reduces halo size and thus improves image quality.

Patient Data

- Halo-artifact may occur around bladder and/or kidneys.
- Absolute SSS results in better image quality than relative SSS.
- PGC does not reduce halo size in case of severe halo-artifacts.
- Decreasing MaxSF from 75 % to 40 % improves image quality.

Conclusions

- To avoid the occurrence of halo-artifacts in ⁶⁸Ga-PSMA-PET/MR, the patient
 - should be scanned as fast as possible after tracer injection.
 - should be asked to void the bladder prior to data acquisition.
- Reducing the maximum scatter fraction to MaxSF = 40 % significantly reduces the halo size.
- Accurate quantitative ⁶⁸Ga-PSMA PET/MR independent of the workflow mandates new scatter estimation techniques.

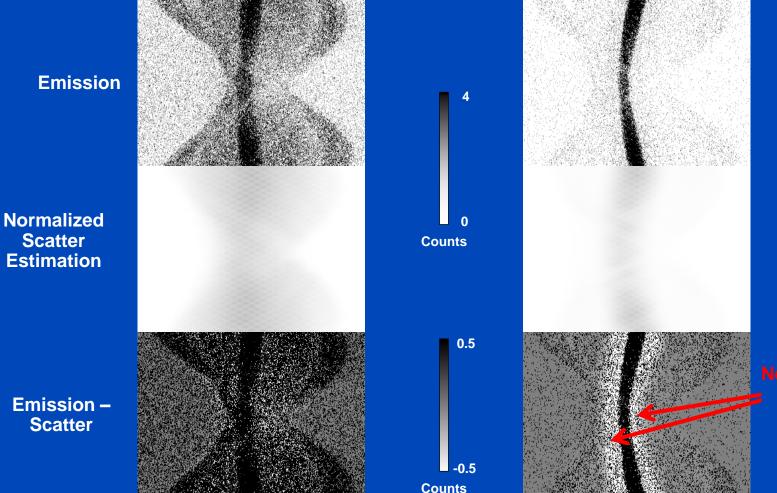
Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This work was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany. Parts of the reconstruction software RayConStruct-IR were provided by RayConStruct[®] GmbH, Nürnberg, Germany.


BONUS SLIDES

¹⁸F-FDG vs. ⁶⁸Ga-PSMA Sinograms

¹⁸F-FDG

⁶⁸Ga-PSMA

Negative values causing the halo-artifact

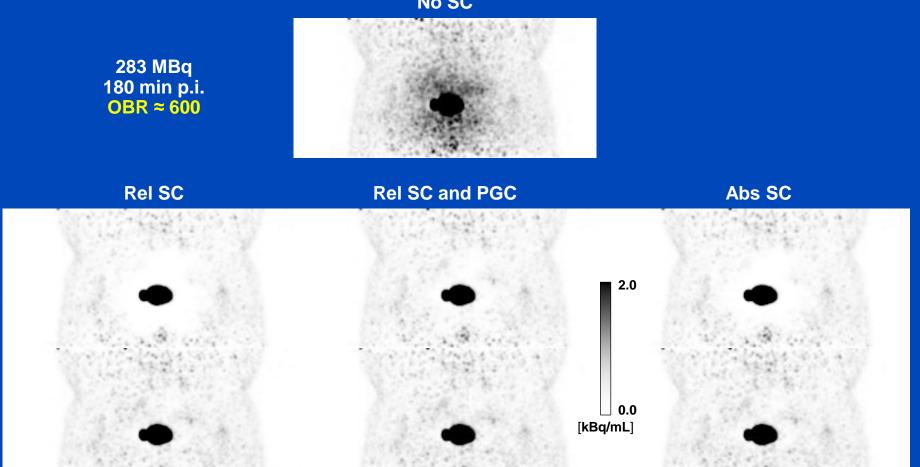
dkfz.

PET Image Reconstruction

- Ordinary-Poisson Ordered Subset Expectation **Maximization (OP-OSEM)**
- Update equation:

 $\lambda_{i}^{(n+1)} = \lambda_{i}^{(n)} \frac{1}{\sum_{j \in J} M_{ij} a_{j}/N_{j}} \sum_{j \in J} M_{ij} \frac{p_{j}}{\sum_{k} M_{kj} \lambda_{k}^{(n)} + (N_{j}r_{j} + s_{j})/a_{j}}$

Voxel index \dot{i}


Image λ

- iLOR index
- Iteration number n
- M System matrix

- p
- J Subset
- aAttenuation
- Emission data N Normalization
 - rRandoms
 - Scatter S^{-}

No SC

75 %

MaxSF =

MaxSF = 40 %

