MLAA-Based RF Surface Coil Attenuation Estimation in Hybrid PET/MR Imaging

> Thorsten Heußer, Christopher M. Rank, Martin T. Freitag, and Marc Kachelrieß

German Cancer Research Center (DKFZ), Heidelberg, Germany

Introduction Attenuation Correction (AC)

Patient AC

- Standard MR-based AC (MRAC) underestimates activity distribution
- Recent approaches to improve MRAC
 - » Atlas-based methods
 - » Dedicated MR sequences (e.g., UTE, ZTE)
 - » Emission-based methods

Hardware AC

- Stationary components
 - » Patient table
 - » MR head coil
 - » Considered during AC using pre-acquired CTbased templates
- Flexible components
 - » RF surface coils
 - » MR-safe headphones
 - » Positioning aids
 - » Not considered during AC in current clinical practice

Introduction Radiofrequency (RF) Surface Coils

- In (PET/)MR imaging, signal receiving RF surface coils are used to improve MR image quality
 - Standard equipment provided by the vendor
 - 3 to 5 partially overlapping RF coils to cover entire torso

coaxial cable

<image><text>

Introduction RF Coil Attenuation

RF coils contribute to photon attenuation

RF coils are not visible in MR images

- ⇒ MRAC neglects RF coil attenuation
- \Rightarrow Activity is underestimated by up to 18%¹
- ⇒ PET quantification is significanly impaired by the use of RF surface coils

[1] Paulus DH, Tellmann L, and Quick HH, "Towards improved hardware component attenuation correction in PET/MR hybrid imaging," *Phys Med Biol* 58(22):8021-40 (2013).

Introduction

- Improve PET quantification by emission-based estimation of the RF coil attenuation
- Joint estimation of attenuation and activity
 - Iterative approach based on the MLAA algorithm¹
- Attenuation map only updated outside patient body outline
 - Only (flexible) hardware attenuation is estimated
 - Patient attenuation map is not modified
 - The proposed algorithm is called external MLAA (xMLAA)

XMLAA1 Objective Function

Objective function Q

 $Q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = L(\boldsymbol{\lambda}, \boldsymbol{\mu}) + \beta_{\rm S} L_{\rm S}(\boldsymbol{\mu}) + \beta_{\rm L} L_{\rm I}(\boldsymbol{\mu})$

Log-likelihood L

$$L(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \sum_{j} \left(p_{j} \ln \hat{p}_{j} - \hat{p}_{j} \right)$$

with
$$\hat{p}_j=rac{a_j}{n_j}\sum_i M_{ij}\lambda_i+rac{s_j}{n_j}+r_j$$

and $a_j=e^{-\sum_i \mu_i l_{ij}}$

- Smoothing prior L_{s} with weight β_{s}
- Intensity prior L_{I} with weight β_{I}

[1] Heußer T, Rank CM, Berker Y, Freitag M, and Kachelrieß M, "MLAA-Based Attenuation Correction of Flexible Hardware Components in Hybrid PET/MR Imaging," accepted for publication in *EJNMMI Physics*.

 λ Activity μ Attenuation

- i Voxel index
- j LOR index
- p_j Measured projections
- \hat{p}_{i} Estimated projections
- a_j Attenuation factor
- n_{i} Normalization factor
- s_j Scatter
- r_j Randoms
- M_{ij} System matrix element
 - l_{ij} Intersection length

XMLAA Hardware Mask

- Manually defined region where RF coil is assumed to be located
- Attenuation update only performed within region defined by hardware mask

XMLAA Prior Expectations

Intensity prior L_I

- Favors the occurrence of pre-defined attenuation coefficients
- Realized as bi-modal Gaussian probability distribution
 - » $\mu_{air} = (0.00 \pm 0.0001) \text{ mm}^{-1}$
 - » $\mu_{\rm RF}$ = (0.01 ± 0.0020) mm⁻¹
- Aim: Suppress non-zero attenuation coefficients in the background while allowing for attenuation coefficients corresponding to the RF coil

Phantom Data Experiments

Pelvis phantom

- Plastic housing filled with water (11 L)
- 55 MBq ⁶⁸Ga dissolved
- Torso RF surface coil fixed with adhesive tape

PET/MR measurement

- Siemens Biograph mMR
- Single bed position
- 62×10⁶ acquired counts

CT-based attenuation map

With RF coil in identical position, the phantom was scanned with a clinical CT device (Siemens SOMATOM Definition Flash)

Phantom Data Attenuation Maps

dkfz.

Phantom Data Attenuation Correction Factors

Phantom Data Activity

dkfz.

Phantom Data Impact of Hardware Mask

Patient Data Data Sets

• Five ¹⁸F-FDG patients

- Data acquired with Siemens Biograph mMR
- 4 min data acquisition per bed position
- Only single bed positions investigated
 - » Lower Thorax (65±8 ×10⁶ counts)
 - » Abdomen ($64\pm 6 \times 10^6$ counts)
- Vendor-provided MR-based attenuation maps used for patient AC
- CTAC not available for comparison

Patient Data Results Thorax

 Average activity underestimation across five patients when neglecting RF coil attenuation (uncorrected) to xMLAA: -5.3±1.2%

Patient Data Results Abdomen

 Average activity underestimation across five patients when neglecting RF coil attenuation (uncorrected) to xMLAA: -6.1±0.9%

Conclusions

Phantom experiments

- MRAC: -8.1 % average activity error compared to CTAC
- xMLAA: +0.8 % average activity error compared to CTAC

Patient data

- Similar trends observed for clinical patient data
- ⇒ xMLAA for RF surface coil attenuation estimation can be employed to improve quantification in hybrid PET/MR imaging

Outlook

- Quantitative evaluation of xMLAA for clinical data required (e.g. comparison with registration-based methods)
- xMLAA is also applicable for attenuation estimation of other hardware components (e.g. MR-safe headphones¹)

Thank You!

This presentation will soon be available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelrieß (marc.kachelriess@dkfz.de). This work was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

