Reanimating Patients: Cardio-respiratory CT and MR motion phantoms based on clinical CT patient data

> Johannes Mayer, Sebastian Sauppe, Christopher M. Rank, Stefan Sawall, and Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Introduction

 Motion compensation (MoCo) is an important tool in medical imaging.

3D CBCT

5D MoCo

 Hard to assess algorithms quantitatively as there is no motion ground truth available.

S. Sauppe, A. Hahn, M. Brehm, P. Paysan, D. Seghers, and M. Kachelrieß, "Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region," in Proceeding of SPIE, D. Kontos, T. Flohr, and J. Lo, eds., p. 97830H, (San Diego), Mar. 2016.

- Generate motion phantoms based on voxelized patient data.
- Provide 4D and 5D motion ground truth patient data including motion information.

High resolution patient data

Motion information

C=0 HU, W=1400 HU

5D phantom

Motion Transfer

4D respiratory source

High resolution patient data

Transfer motion to static destination patient anatomy

Motion information

C=0 HU, W=1400 HU

4D cardiac source

5D phantom

Motion Transfer with Deformable Image Registration

Motion extraction

 $f_t(\boldsymbol{r})$

 $m{m}_t(m{r})$

t

Motion data in source anatomy

Motion information stored in motion vector fields (MVFs)

Motion phase

$$ightarrow f_t(m{r}) = f_0(m{m}_t(m{r}))$$

MVF transfer

 $\tilde{\boldsymbol{m}}_t(\boldsymbol{r}) = \boldsymbol{d}^{-1}(\boldsymbol{m}_t(\boldsymbol{d}(\boldsymbol{r})))$ $\rightarrow g_t(\boldsymbol{r}) = g(\tilde{\boldsymbol{m}}_t(\boldsymbol{r}))$

Anatomy matching

Static patient data in destination anatomy

 $oldsymbol{d}(oldsymbol{r})$

 $g(\boldsymbol{r})$

Anatomy map relating both anatomies

 $\rightarrow g(\boldsymbol{r}) \doteq f_0(\boldsymbol{d}(\boldsymbol{r}))$

Motion Transfer with Deformable Image Registration

Motion extraction

 $f_t(\boldsymbol{r})$

 $oldsymbol{m}_t(oldsymbol{r})$

t

Motion data in source anatomy

Motion information stored in motion vector fields (MVFs)

Motion phase

 $ightarrow f_t(\boldsymbol{r}) = f_0(\boldsymbol{m}_t(\boldsymbol{r}))$

Anatomy matching

 $g(\boldsymbol{r})$

Static patient data in destination anatomy

 $oldsymbol{d}(oldsymbol{r})$

Anatomy map relating both anatomies

 $\rightarrow g(\boldsymbol{r}) \doteq f_0(\boldsymbol{d}(\boldsymbol{r}))$

MVF transfer

 $\tilde{\boldsymbol{m}}_t(\boldsymbol{r}) = \boldsymbol{d}^{-1}(\boldsymbol{m}_t(\boldsymbol{d}(\boldsymbol{r})))$ $\rightarrow g_t(\boldsymbol{r}) = g(\tilde{\boldsymbol{m}}_t(\boldsymbol{r}))$

Motion Transfer with Deformable Image Registration

Motion extraction

 $f_t(\boldsymbol{r})$

 $oldsymbol{m}_t(oldsymbol{r})$

t

Motion data in source anatomy

Motion information stored in motion vector fields (MVFs)

Motion phase

 $ightarrow f_t(\boldsymbol{r}) = f_0(\boldsymbol{m}_t(\boldsymbol{r}))$

Anatomy matching

 $g(oldsymbol{r})$

Static patient data in destination anatomy

 $oldsymbol{d}(oldsymbol{r})$

Anatomy map relating both anatomies

 $\rightarrow g(\boldsymbol{r}) \doteq f_0(\boldsymbol{d}(\boldsymbol{r}))$

MVF transfer

$$\tilde{\boldsymbol{m}}_t(\boldsymbol{r}) = \boldsymbol{d}^{-1}(\boldsymbol{m}_t(\boldsymbol{d}(\boldsymbol{r})))$$

$$\rightarrow g_t(\boldsymbol{r}) = g(\tilde{\boldsymbol{m}}_t(\boldsymbol{r}))$$

Interpatient Registration

- The anatomy map d(r) is estimated based on the following cost function:

 $C(d) = MI(f_0, g, d) + \lambda \mathcal{R}(d) + \mathcal{L}$

- Mutual information (MI) is used as a similarity criterion.
- $\mathcal{R}(d)$ is a penalty term necessary to conserve the behavior of the transferred motion.
- Corresponding anatomic regions are forced to be mapped upon each other by a landmark term ${\cal L}$.

Contribution of Anatomy Map to Transformed Motion

- Local change of volume generated by a coordinate transform is given by the Jacobian determinant.
- The same expansion motion in both anatomies means the same determinant at corresponding positions:

$$\det\left[\frac{\partial \tilde{\boldsymbol{m}}}{\partial \boldsymbol{r}}(\boldsymbol{r})\right] \stackrel{!}{=} \det\left[\frac{\partial \boldsymbol{m}}{\partial \boldsymbol{r}}(\boldsymbol{d}(\boldsymbol{r}))\right]$$

- Plugging in $ilde{m}_t(r) = d^{-1}(m_t(d(r)))$ yields:

$$\det\left[\frac{\partial \boldsymbol{d}^{-1}}{\partial \boldsymbol{r}}(\boldsymbol{m}(\boldsymbol{d}(\boldsymbol{r})))\right] \cdot \det\left[\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{r}}(\boldsymbol{r})\right] \stackrel{!}{=} 1$$

Motivation for Regularization Penalty

• View anatomy map components as series in r :

$$egin{aligned} m{d}(m{r}) &= m{c} + m{A}m{r} + \mathcal{O}(|m{r}|^2) \ m{d}^{-1}(m{r}) &= \widehat{m{c}} + \widehat{m{A}}m{r} + \mathcal{O}(|m{r}|^2) \end{aligned}$$

If higher-than-linear order coefficients vanish:

$$\Rightarrow \widehat{A} = A^{-1}$$

$$\rightarrow \det\left[\frac{\partial d^{-1}}{\partial r}\right] \cdot \det\left[\frac{\partial d}{\partial r}\right] = \det[A^{-1}] \cdot \det[A] = 1$$

Affine Regularization Penalty

Higher order in this series need to be suppressed:

$$\boldsymbol{d}(\boldsymbol{r}) = \boldsymbol{c} + \boldsymbol{A}\boldsymbol{r} + \mathcal{O}(|\boldsymbol{r}|^2)$$

- Penalizing a non-vanishing second derivative will suppress non-linear behavior.
- Choose the regularization:

$$\mathcal{R}(oldsymbol{d}) = \sum_{i,j,k} \left(rac{\partial^2 oldsymbol{d}_i(oldsymbol{r})}{\partial oldsymbol{r}_j \partial oldsymbol{r}_k}
ight)^2$$

 This term is well-known in image registration but was not used in the context of transferring motion yet.

Generic Example

Source motion $f_0(oldsymbol{m}_t(oldsymbol{r}))$

Estimation of Anatomy Map

Properties of Anatomy Map

Transformed Motion Vector Fields

Landmarks for Interpatient Registration

Reference phase of source patient

Destination patient

A small set of fiducials (•) was marked in source and destination anatomy to guide the registration algorithm.

- Local shearing necessary to match anatomy of heart.
- Affine constraints can be seen outside the heart.

Transformed source patient

C=0 HU, W=1400 HU

Cardio- Reanimated Destination Patient

- We successfully applied the approach to cardiac motion.
- A well-regularized anatomy map leads to realistic cardiac motion transfer.

C=0 HU, W=1400 HU

Cardio-Respiratory Motion Phantom

 Composition of cardiac and respiratory MVFs leads to 5D motion

C=0 HU, W=1400 HU

Multi-Modality Motion Transfer

• As long as an anatomy map can be computed the motion transfer is not modality-restricted.

4D CT Source patient

3D MR destination patient

Multi-Modality Motion Transfer

• As long as an anatomy map can be computed the motion transfer is not modality-restricted.

4D CT Source patient

4D MR destination patient

Conclusion

- A careful regularization of anatomy map is needed for a reasonable motion transfer.
- Successfully simulated 5D cardiorespiratory motion on patient data.
- These high-quality 4D and 5D data sets, with the motion information perfectly known, will be used to assess motion compensation algorithms.

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

