01.03.2017

Accurate Reconstruction of X-Ray Spectra in CT from Simple Transmission Measurements

> Carsten Leinweber, Joscha Maier, and Marc Kachelrieß

German Cancer Research Center (DKFZ), Heidelberg, Germany

Introduction

- CT applications that require accurate knowledge of the emitted or detected spectrum:
 - Organ dose estimation
 - Beam hardening correction
 - Dual energy decomposition
 - K-edge imaging
 - Quantitative perfusion measurements
 - ...

. . .

- Existing methods:
 - Semi-analytic models
 - Monte-Carlo simulation
 - Spectroscopy
 - Compton scattering
 - Transmission measurements (direct, simple, no extra hardware)

Materials and Methods Spectrum Reconstruction from Transmission Measurements

• Lambert-Beer law:

$$\tau_m = \frac{N_m}{N_0} = \sum_{b=1}^B e^{-\mu_{mb} \, d_m} \, w_b$$

• Problem:

"Given τ for different (known) combinations of $\mu(E)$ and d, reconstruct w(E)."

- Methods:
 - Few parameter modelling
 - Neural networks
 - Expectation maximization (EM)
 - Truncated singular value decomposition (TSVD)
 - New: PTSVD

Materials and Methods Truncated Singular Value Decomposition (TSVD)

• Discretized Lambert-Beer law in matrix notation:

$$au_m = \sum_{b=1}^B a_{mb} w_b \longrightarrow au = oldsymbol{A} \cdot oldsymbol{w}$$

Minimize the least square difference

$$oldsymbol{w} = rgmin_{oldsymbol{w}} \|oldsymbol{A}\cdotoldsymbol{w} - oldsymbol{ au}\|_2^2 \quad \longrightarrow \quad oldsymbol{w} = oldsymbol{A}^+\cdotoldsymbol{ au}$$

- Calculation of the pseudo-inverse A⁺
 - Decompose A into orthonormal basis with help of SVD:

$$oldsymbol{A} = \sum_{b=1}^B oldsymbol{u}_b \cdot s_b oldsymbol{v}_b^T$$

- Truncate *A*⁺ to the highest *R* singular values:

$$oldsymbol{w} = \sum_{b=1}^R \left(oldsymbol{v}_b \cdot rac{oldsymbol{u}_b^T}{s_b}
ight) \cdot oldsymbol{ au} \qquad R \leq B$$

Materials and Methods **Prior Truncated Singular Value Decomposition (PTSVD)**

 Minimize the weighted least square difference with help of TSVD to obtain the low frequent solution from range:

$$m{w}_R = rgmin_{m{w}} \|m{A}\cdotm{w}-m{ au}\|_{m{W}}^2$$
 with $m{W} = ext{Cov}(m{ au},m{ au})^{-2}$

 Calculate a solution from null space that represents the high frequency components (here: characteristic peaks):

$$oldsymbol{w}_{\mathrm{N}} = \sum_{b=R+1}^{B} oldsymbol{(v_b^T \cdot w_{\mathrm{H}}) v_b}$$

• Add the solution from null space to the solution from range:

$$\boldsymbol{w} = \boldsymbol{w}_R + \boldsymbol{w}_N$$

Materials and Methods Prior Truncated Singular Value Decomposition (PTSVD)

- We model the prior spectrum: •
 - $oldsymbol{w}_{
 m H}(oldsymbol{h}) = \sum_{p=1} h_p \,oldsymbol{e}_p$
- **Iteration schema:** •

$$C(\boldsymbol{h}) = \| \boldsymbol{w}_L(\boldsymbol{h}) \wedge \boldsymbol{0} \|_2^2 + \lambda \| \nabla \cdot \boldsymbol{w}_L(\boldsymbol{h}) \|_2^2$$

Non-negativity Smoothn

 $oldsymbol{w}_{
m L}(oldsymbol{h}) = oldsymbol{w}(oldsymbol{h}) - oldsymbol{w}_{
m H}(oldsymbol{h})$

ess

 $\|_{2}^{2}$

Materials and Methods Simulation / Measurement Study

Simulation conditions:

- 150 kV tungsten target spectrum simulated according to Tucker et al.
- Spectrum estimation from 28 aluminum (Al) attenuators with lengths ranging from 0.5 mm to 132.5 mm
- Poisson noise is added to the AI transmission data for varying numbers of incident photons N_0
- Noiseless simulations of polyoxymethylene (POM) with continuous attenuation length for validation

Measurement conditions:

- Experimental setup consisting of a 150 kV transmission x-ray tube and a flat detector
- 28 measurements of AI and POM attenuators with attenuation lengths ranging from 0.5 mm to 132.5 mm
- Material for spectrum estimation: Al
- Material for spectrum validation: POM

Results Noiseless Simulated Data

Results Noisy Simulated Data $N_0 = 1 \times 10^{12}$

Results Noisy Simulated Data $N_0 = 1 \times 10^{10}$

Results Noisy Simulated Data $N_0 = 1 \times 10^8$

Results Noisy Simulated Data $N_0 = 1 \times 10^6$

Results Measured Data $N_0 \approx 1 \times 10^{10}$

Conclusion and Discussion

- PTSVD overcomes the limitations of TSVD by incorporating prior information about the statistical nature of the transmission data and about the high frequency components of the spectrum.
- PTSVD is less prone to noise compared to TSVD.
- Simulations show that for accurate transmission data PTSVD leads to smaller length errors compared to EM.
- Effects that limit the accuracy of transmission measurements: quantum noise, electronic noise, scattered radiation, image lag, quantization errors, dynamic range, ...

Thank You!

This study was supported by AiF grant KF2301007NT3.

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

