Focal Spot Blur Correction for Cone-Beam CT

Nadine Waltrich^{1,2}, Stefan Sawall^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany

To correct for the spatial resolution mismatch caused by anode angulation in short scan CBCT.

FDK Reconstruction of Fine-Pored Aluminum Foam

left sharp

dkfz.

Positions of the Metal Edges on the Measurement Plane in u-Direction

Positions of the Metal Edges on the Measurement Plane in u-Direction

2D Voxel-Wise Focal Spot Blur Distribution

1. Projection-Based Iterative Focal Spot Blur Correction (PBiFSC) Cost function: $C(\hat{\boldsymbol{p}}) = ||G\hat{\boldsymbol{p}} - \boldsymbol{p}||$ $G \cong$ shift variant Gaussian convolution operator $p \cong$ projection data Minimize the cost function $\nabla C(\hat{\boldsymbol{p}}) = G^T (G\hat{\boldsymbol{p}} - \boldsymbol{p})$ $\hat{\boldsymbol{p}}_{n+1} = \hat{\boldsymbol{p}}_n + \lambda \nabla C(\hat{\boldsymbol{p}}_n)$ starting with $\ \hat{m{p}}_0 = m{p}$

The stepsize λ is chosen to minimize the cost function.

FDK Reconstruction of Fine-Pored Aluminum Foam

left sharp

right blurry

C = -350 HU ; W = 1500 HU

PBiFSC 5 Iteration Fine-Pored Aluminum Foam

left sharp

right blurry

C = -350 HU ; W = 1500 HU

FDK Reconstruction, Object Positioned on the Left

maximal peak-to-peak value of 810 HU

C = 0 HU ; W = 2000 HU

FDK Reconstruction, Object Positioned on the Right

maximal peak-to-peak value of 620 HU

C = 0 HU ; W = 2000 HU

PBiFSC 5 Iterations Smoothed with an Position-Dependent Bilateral Filter

maximal peak-to-peak value of 820 HU

C = 0 HU ; W = 2000 HU

Conclusions

 5 iterations of the deconvolution algorithm result in a good spatial resolution restoration.

 \rightarrow An adjustment of the image resolution is possible.

- The disadvantage is the slight increase in the noise level. Thus, for practical use an additional filter is used.
- Fast alternative compared to a conventional iterative focal spot blur correction.

Thank You!

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

