Deep Scatter Estimation (DSE): Accurate Real-Time Scatter Estimation for X-Ray CT using a Deep Convolutional Neural Network

Joscha Maier^{1,2}, Stefan Sawall^{1,2}, and Marc Kachelrieß^{1,2} ¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-Universität, Heidelberg, Germany

Wels 2016

Standard reconstruction

Simulation-based artifact correction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

- beam hardening artifacts
- off-focal radiation artifacts
- focal spot blurring artifacts Presented a Webs 2018
- detector blurring artifacts
- scatter artifacts

Motivation

- X-ray scatter is a major cause of image quality degradation in CT.
- Appropriate scatter correction is crucial to maintain the accuracy of the CT measurement.

Scatter Correction

Scatter suppression

- Anti-scatter grids
- Collimators

Scatter estimation

- Monte Carlo simulation
- Kernel-based approaches
- Primary modulation
- Beam blockers
- Boltzmann transport

igodol

. . .

Monte Carlo Scatter Estimation

- Simulation of photon trajectories according to physical interaction probabilities.
- Simulating a large number of photon trajectories well approximates the expectation value of the actual scatter distribution.

Scatter distribution of an incident needle beam

Complete scatter distribution

Kernel-Based Scatter Estimation

Estimate needle beam scatter kernels as a function of the projection data p

T(p)

Estimate mean scatter kernel that maps a function of the projection data p to scatter distribution

$$\int_{\mathbf{u}} \operatorname{est}(\boldsymbol{u}) = \int T(p)(\boldsymbol{u}')G(\boldsymbol{u},\boldsymbol{u}',\boldsymbol{c})d\boldsymbol{u}'$$

Deep Scatter Estimation (DSE)

 Use a deep convolutional neural network to estimate scatter using a function of the acquired projection data as input.

Deep Scatter Estimation (DSE) Training of the network

 Optimize weights and biases of convolutional network such that the mean squared error between the output and MC scatter simulations is minimal:

 $\{w, b\} = \operatorname{argmin} ||DSE(T(p)) - I_{MC}||_2^2$

Input: T(p)

Monte Carlo scatter estimate $I_{\rm MC}$

Minimize squared difference

DSE(T(p))

 $T(p)(\boldsymbol{u}') \mathcal{C}(\boldsymbol{u}, \boldsymbol{u}', \boldsymbol{c}) d\boldsymbol{u}'$

Convolutional neural network

Deep Scatter Estimation Network architecture

Simulation Study: Training Data

- Simulation of 16416 projections using different objects and parameter settings to train the DSE network.
- Training on a GeForce GTX 1080 for 80 epochs using the Keras framework, an Adam optimizer and a mini-batch size of 16.

Simulation Study: Testing Data

 Simulation of a tomography (720 projection / 360°) of five components using acquisition parameters that differ from the ones used to generate the training data set.

Kernel-based scatter estimation¹:

- Estimation of scatter by a convolution of the scatter source term T(p) with a scatter propagation kernel G(u, c):

$$I_{\rm s, \, est}(\boldsymbol{u}) = \begin{pmatrix} c_0 \cdot p(\boldsymbol{u}) \cdot e^{-p(\boldsymbol{u})} \end{pmatrix} * \begin{pmatrix} \sum_{\pm} e^{-c_1(\boldsymbol{u}\hat{\boldsymbol{e}}_1 \pm c_2)^2} \cdot \sum_{\pm} e^{-c_3(\boldsymbol{u}\hat{\boldsymbol{e}}_2 \pm c_4)^2} \end{pmatrix}$$
$$T(p)(\boldsymbol{u})$$
$$G(\boldsymbol{u}, \boldsymbol{c})$$
$$Open$$
Open

parameters:

¹ B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol. 9, 563–569 (1999).

parameters:

 c_1, c_2, c_3, c_4

Hybrid scatter estimation²:

- Estimation of scatter by a convolution of the scatter source term T(p) with a scatter propagation kernel G(u, c):

$$I_{\rm s, \, est}(\boldsymbol{u}) = \begin{pmatrix} c_0 \cdot p(\boldsymbol{u}) \cdot e^{-p(\boldsymbol{u})} \end{pmatrix} * \begin{pmatrix} \sum_{\pm} e^{-c_1(\boldsymbol{u}\hat{\boldsymbol{e}}_1 \pm c_2)^2} \cdot \sum_{\pm} e^{-c_3(\boldsymbol{u}\hat{\boldsymbol{e}}_2 \pm c_4)^2} \end{pmatrix}$$
$$\begin{bmatrix} T(p)(\boldsymbol{u}) \\ Open \\ parameters: \\ C_0 \end{bmatrix} \begin{bmatrix} G(\boldsymbol{u}, \boldsymbol{c}) \\ Open \\ parameters: \\ C_1, C_2, C_3, C_4 \end{bmatrix}$$

$$\{c_i\}_n = \operatorname{argmin} \sum_{u} \|I_{s, \text{ est}}(n, u, \{c_i\}) - I_{s}(n, u)\|_2^2,$$
Samples of the test data set
$$\begin{array}{c} \text{Detector} \\ \text{coordinate} \end{array}$$

$$\begin{array}{c} \text{Scatter estimate} \\ \text{Detector} \\ \text{coordinate} \end{array}$$

$$\begin{array}{c} \text{Coarse MC simulation} \\ \text{Coarse M$$

² M. Baer, M. Kachelrieß: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849–6867 (2012).

Performance on Testing Data for Different Inputs

Scatter estimates for simulated testing data

dkfz.

Scatter estimates for simulated testing data

dkfz.

CT reconstructions of scatter corrected testing data

dkfz.

Application to Measured Data

- Measurement at DKFZ table-top CT
 Tomography of aluminum profile (720 projections / 360°)
 110 kV Hamamatsu micro-focus x
 - ray tube
- Varian flat detector

	Training	Testing	
Components			
Detector elements	768×768	768×768	
Source-detector distance	580 mm	580 mm	
Source-isocenter distance	100 mm, 110 mm, 120 mm	110 mm	
Tilt angle	0°, 30°, 60°, 90°	0°	
Tube voltage	100 kV, 110 kV, 120 kV	110 kV	
Copper prefilter	1.0 mm, 2.0 mm	2.0 mm	
Scaling	1.0	-	
Number of projections	8208	720	

Performance of DSE for measured data

Projection data

CT reconstructions

Performance of DSE for measured data

Projection data

Component	MC scatter	Kernel-based - MC / MC	Hybrid - MC / MC	DSE - GT / MC
	C = 0.04, W = 0.06	Mean 720 projections: 12.6 %	Mean 720 projections: 5.4 %	Mean 720 projections: 2.5 %

CT reconstructions

Conclusions

- DSE is a fast (~ 20 ms / projection) and accurate alternative to Monte Carlo simulation.
- DSE outperforms conventional kernel-based approaches in terms of accuracy.
- DSE is not restricted to reproduce only Monte Carlo scatter estimates but can be used with any other scatter estimate.

Thank You!

This presentation will soon be available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

