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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+
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CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution

• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the expectation value of the actual 
scatter distribution.



5

Kernel-Based Scatter Estimation

Estimate needle beam scatter 
kernels as a function of the 
projection data

Estimate mean scatter 
kernel that maps a function 
of the projection data      to 
scatter distribution
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Deep Scatter Estimation (DSE)
Idea

• Train a deep convolutional neural network to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network
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Deep Scatter Estimation (DSE)
Training of the network

• Optimize weights and biases of 
convolutional network such that the 
mean squared error between the output 
and MC scatter simulations is minimal:

Input:

Minimize 
squared 

difference

Monte Carlo 
scatter estimate

Convolutional neural network
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training of the DSE Network

• Simulation of 12000 projection data using 
simulations of different heads and different 
acquisition parameters.

• Splitting into 80 % training and 20 % 
validation data.

• Optimize weights of convolutional network 
to reproduce Monte Carlo scatter estimates:

• Training on a GeForce GTX 1080 for 80 
epochs.
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Testing of the DSE Network
Simulated Data

+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

• Application of the DSE network to predict 
scatter for simulated data of a head 
(different from training data).

Ground truth
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network          
Measured Data

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT
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Reference 1
Kernel-based scatter estimation

• Kernel-based scatter estimation1:
– Estimation of scatter by a convolution of the scatter source term      

with a scatter propagation kernel            :

MC scatter simulationScatter estimate
Samples of the 

training data set

Detector 
coordinate

1 B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth 
generation CT scanners. Eur. Radiol. 9, 563–569 (1999). 

Open 
parameters:

Open 
parameters:
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Reference 2
Hybrid scatter estimation

• Hybrid scatter estimation2 :
– Estimation of scatter by a convolution of the scatter source term      

with a scatter propagation kernel            :

Open 
parameters:

Open 
parameters:

2 M. Baer, M. Kachelrieß: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849–6867 (2012). 

Coarse MC simulationScatter estimate
Samples of the test 

data set

Detector 
coordinate
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Performance on Validation Data for 
Different Inputs
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Results – Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT|)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04
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Results – Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT|)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

Mean absolute 
error for all 
projections:

14.1 %

Mean absolute 
error for all 
projections:

7.2 %

Mean absolute 
error for all 
projections:

1.2 %

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04
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Results – CT Reconstructions of 
Simulated Data

No Correction
Kernel-Based Scatter 

Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationGround Truth
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Results – CT Reconstructions of 
Measured Data

No Correction
Kernel-Based Scatter 

Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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Conclusions

• DSE is a fast and accurate alternative to Monte Carlo 
simulation.

• DSE outperforms conventional kernel-based 
approaches in terms of accuracy.

• DSE is not restricted to reproduce only Monte Carlo 
scatter estimates but can be used with any other 
scatter estimate.
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Thank You!

This presentation will soon be available at www.dkfz.de/ct 

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (www.dkfz.de), or directly 

through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


