DL-2.5

On the Impact of Input Feature Selection in Deep Scatter Estimation for Positron Emission Tomography

Yannick Berker and Marc Kachelrieß

German Cancer Research Center (DKFZ), Heidelberg, Germany

PET Scatter Correction

- \rightarrow improved contrast
- \rightarrow improved lesion detectability
- \rightarrow better quantification

Scatter-Sensitive PET Applications

- Highly-specific PET tracers¹
 Halo effect with ⁶⁸Ga-PSMA
- Joint estimation^{2,3}
 Unknown radiotracer and attenuation
- Long-axial-FOV PET scanners⁴
 - Need for fast whole-body scatter simulation Halo effect

Heußer, Kachelrieß et al. *PLoS ONE*. 2017;12(8):e0183329.
 Heußer, Kachelrieß et al. *IEEE Trans Nucl Sci*. 2016;63(5):2443-51.

[3] Nuyts et al. *IEEE TRPMS*. 2018;2(4):273-8.[4] Cherry et al. *Sci Transl Med*. 2017;9(381):eaaf6169.

Motivation

- Monte Carlo scatter simulation (MCSS)
 - Highly accurate
 - Slow (computationally expensive)
- State of the art: Single scatter simulation (SSS)
 - Relatively fast
 - Inaccurate (tail fitting)

Objective Fast (and accurate) scatter correction
 Approach Convolutional Neural Networks (CNNs)

 SSS-based: speed-up of (TOF-)SSS still subject of research¹

- Aim: MC-based deep scatter estimation

Artificial Neuron¹

- Nonlinear activation function f
- Multiple inputs, linearly combined
- Trainable weights w_i and bias b
- Supervised learning: adapt parameters to in-/output

Convolutional Neural Networks

- Fully-connected vs. convolutional layers of neurons
- Vector-valued inputs (images, channels, features)

Deep Scatter Estimation in CT

- A 2-D CNN to estimate scatter from scatter-contaminated projections¹⁻³
 - Trained using measurements and reference
 - Applied to individual projections
 - Real-time performance for cone-beam CT

[1] Maier, Berker, Sawall, Kachelrieß. *Proc SPIE*. 2018:105731L.
 [3] Maier, Kachelrieß et al. *Med Phys*. 2018;46(1):238-49.
 [2] Maier, Kachelrieß et al. *J Nondestruct Eval*. 2018;37(3):57. Also compare Hansen et al. *Med Phys*. 2018;45(11):4916-26.

Estimated scatter

projections

Previous Work in PET

- Emission and attenuation, detector data¹
 14 phantoms (13 training, 1 validation)
- Emission and attenuation, detector data²
 - 20 whole-body patients (57/14 bed positions)
 - 3.6% mean absolute error (+ one outlier)
- Emission only, reconstructed images³
 - 35 brain patients (25/10 scans)
 - 1% ± 5% deviation (+ one outlier)

Qian, Rui, De Man. IEEE NSS/MIC 2017;M04-1. [2] Berker, Maier. Kachelrieß. IEEE NSS/MIC 2018;M-17-04.
 Yang, Park, Gullberg, Seo. Phys Med Biol. 2019;64(7):075019.

- Investigate the need to input emission and/or attenuation data
- Understand the influence of various other transformations of the input data

Network Structure: U-Net¹

Available Patient Data

• 20 patients: FDG, Siemens Biograph mMR

Prompts

ACFs

Scatter

• Padding: $344 \times 127 \rightarrow 352 \times 128$ pixels

Results: Accuracy¹

Normalized Mean Absolute Error: NMAE = $\frac{\sum_{i} |DSE_{i} - SSS_{i}|}{\sum_{i} |SSS_{i}|}$

Scatter projections

PET reconstructions

Mean/Std	7.1 ± 1.7 %
Range	4 – 10 %
Outlier	14 %

3.6 ± 2.2 % 1 – 8 % 28 %

[1] Berker, Maier. Kachelrieß. IEEE NSS/MIC 2018;M-17-04. NMAE, normalized mean absolute error (per bed position)

Results: Best Case

Best case: brain bed position

Bed position e7876f, NMAE: 4.17 % (scatter), 1.18 % (recon) 252 views, 25 fps. DSE filtered for display along views (Gaussian, FWHM 3.5 views)

Results: Best Case

Bed position e7876f, NMAE: 4.17 % (scatter), 1.18 % (recon) Reconstruction, transaxial (a.u.), 10 fps

Results: Worst Case

Worst case: filled bladder inside the FOV

Bed position fce8f8, NMAE: 8.89 % (scatter), 7.75 % (recon) 252 views, 25 fps. DSE filtered for display along views (Gaussian, FWHM 3.5 views)

Results: Worst Case

Bed position fce8f8, NMAE: 8.89 % (scatter), 7.75 % (recon) Reconstruction, transaxial (a.u.), 10 fps

Original vs. Current Parameters

Network

- Dropout
- Sigmoid output
- Poisson loss function

Implementation

- TensorFlow-Keras v1.8-v1.12
- 10 epochs

Adam optimizer

Batch size 4, initial learning rate 10⁻⁴

Workstation

- Intel Xeon E5-2667 v4 (2 x 8 cores, 256 GB), NVIDIA Quadro M5000 (2048 cores, 8 GB)

Network

- No dropout
- ReLU output
- Mean absolute error
- Implementation
 - TensorFlow-Keras v1.13.1
 - 5 epochs

Specific Investigations

- Sinograms vs. projections
- Choice of input features
 - Emission and/or attenuation
 - Redundant combinations
- Number of samples
 - Data augmentation
 - Number of bed positions
- Transformations
 - Gap filling of prompts
 - Normalization of inputs
- Scatter scaling

Sinograms vs. Projections

S

Projections vs. Sinograms

Validation NMAE vs. Epochs

Specific Investigations

Sinograms vs. projections

Choice of input features

- Emission and/or attenuation
- Redundant combinations

Number of samples

- Data augmentation
- Number of bed positions

Transformations

- Gap filling of prompts
- Normalization of inputs
- Scatter scaling

Emission vs. Attenuation

Validation NMAE vs. Epochs

dkfz 22

NMAE, normalized mean absolute error; ACF, attenuation correction factor; AF, attenuation factor

Emission and Attenuation

Validation NMAE vs. Epochs

NMAE, normalized mean absolute error; ACF, attenuation correction factor; AF, attenuation factor

Redundant Features

Validation NMAE vs. Epochs

NMAE, normalized mean absolute error; ACF, attenuation correction factor; AF, attenuation factor

Specific Investigations

- Sinograms vs. projections
- Choice of input features
 - Emission and/or attenuation
 - Redundant combinations

Number of samples

- Data augmentation
- Number of bed positions
- Transformations
 - Gap filling of prompts
 - Normalization of inputs
- Scatter scaling

Data Augmentation

4 x number of samples

- Vertical flipping
- Horizontal flipping
- Expectation
 - Better generalization

Data Augmentation

Training NMAE vs. Batches

NMAE, normalized mean absolute error

Data Augmentation

Validation NMAE vs. Epochs

Number of Bed Positions

Previous study¹

- 2-6 per patient (brain/lungs/pelvis)
- 57/14 bed positions
- 0.8% training NMAE
- 8.3% validation NMAE

Current study

- 5-7 per patient (brain to thighs)
- 88/18 bed positions
- 1.5% training NMAE
- 11.7% validation NMAE

Specific Investigations

- Sinograms vs. projections
- Choice of input features
 - Emission and/or attenuation
 - Redundant combinations

Number of samples

- Data augmentation
- Number of bed positions

Transformations

- Gap filling of prompts
- Normalization of inputs
- Scatter scaling

Gap Filling of Prompts

no gap filling

with gap filling

Gap Filling of Prompts

Training NMAE vs. Batches

Validation NMAE vs. Epochs

NMAE, normalized mean absolute error

Input Normalization: Range [0, 1]

33

0.2

0.4

0.6

0.8

1.0

2

1

0

0.0

Input Normalization: [0, 1]

Training NMAE vs. Batches

Validation NMAE vs. Epochs

Input Normalization: Zero Mean, Unit Variance

ACF, attenuation correction factor; AF, attenuation factor

Input Normalization: Zero Mean, Unit Variance

Training NMAE vs. Batches

Validation NMAE vs. Epochs

Specific Investigations

- Sinograms vs. projections
- Choice of input features
 - Emission and/or attenuation
 - Redundant combinations
- Number of samples
 - Data augmentation
 - Number of bed positions
- Transformations
 - Gap filling of prompts
 - Normalization of inputs
- Scatter scaling

Scatter Scaling

SSS, single scatter simulation; DSE, deep scatter estimation

Scatter Scaling

Training NMAE vs. Batches

Validation NMAE vs. Epochs

Scatter Scaling

Conclusion

- A U-Net CNN can reproduce Siemens SSS with <7% NMAE
- No improvements seen by
 - additional bed positions (less specialized CNN, +3% NMAE)
 - redundant features (only for smaller dataset)
 - gap filling, input normalization
- Improvements seen by
 - using projections rather than sinograms (~5% NMAE)
 - data augmentation (~2% NMAE)
 - using emission and attenuation data (~2% NMAE)
 - training without scatter scaling (~4% NMAE)
- Aim: Deep Scatter Estimation trained with Monte Carlo scatter

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Supported by a DKFZ Postdoc fellowship – also apply for a DKFZ PhD fellowship. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.