Deep Learning-Aided CBCT Image Reconstruction of Interventional Material from Four X-Ray Projections

Elias Eulig^{1,2}, Joscha Maier¹, Robert Bennett², Michael Knaup¹, Klaus Hörndler³, Adam Wang², and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Stanford University, Stanford, USA ³Ziehm Imaging GmbH, Nürnberg, Germany

Motivation & Prior Work

Today's Interventional guidance

 limited information about 3D structure of interventional tools (e.g. of stents)

Tomography (3D) ► no temporal information

C-arm systems

Tomographic (4D) interventional guidance

- could provide full spatiotemporal information about interventional tools
- could enable new minimally invasive radiological interventions

Currently, tomographic interventional guidance would result in excessively high dose due to the need for continuous CBCT scanning.

Motivation & Prior Work

PrIDICT¹ leverages the following characteristics of interventional imaging

- Repetitive scanning of the same body region. Changes are sparse
- Interventional materials are fine structures (very few voxels) of high contrast

Has been further improved to account for patient motion between the prior and the interventional acquisition via registration of the prior scan²

Stanford ¹J. Kuntz, M. Kachelrieß, et al., "Real-time x-ray-based 4D image guidance [...]", Eur. Radiol., Jun. 2013. ²B. Flach, M. Kachelrieß, et al., "Low dose tomographic fluoroscopy: 4D intervention [...].", Med. Phys., Oct 2013.

Motivation & Prior Work

Two main drawbacks of existing pipeline

- Further dose reduction by a factor of 5 to 10 is necessary
- Deformable volume-to-raw data (3D-2D) registration method¹ is too computing-intensive to realize the pipeline in real-time
- clinically impractical

Stanford

Develop a novel deep learning-based pipeline

- Deep Tool Extraction (DTE) Eliminate the need for a patient prior or registration step by extracting the interventional tools in the projection domain
- Deep Tool Reconstruction (DTR) Reconstruct interventional tools from only four x-ray projections

Deep Tool Extraction Measurements

- Acquired data of guide wires and stents using custom built phantom for both training and testing of the CNN
- Measured 5 different stents (1-5) and 2 guide wires
 - in 3 different vessels (A-C)
 - in ~5 different positions each
- Use 3 stents for training/validation
- Use 2 stents and guide wires for testing

Stents for training

Stents for testing

Deep Tool Extraction Measurements

Deep Tool Extraction Simulations

- Forward-project STLs of stents and simulated guide wires
- During training, randomly crop patches of patient scans (thorax) and add projections of interventional tools
- Patient scans were acquired with a shifted detector
 ➤ reject patches p where median(p) ≤ 1 cm⁻¹

Patient scan

Sample inputs

Respective targets

Conventional DSA

Deep DSA^{1,2}

Train on static cases where ground truth is conventional DSA

Stanford ¹E. Eulig, M. Kachelrieß et al., "Learned Digital Subtraction Angiography (Deep DSA) [...]", Fully 3D, Jun. 2019. ²E. Eulig, M. Kachelrieß et al., "Deep DSA: Learning Mask-Free Digital Subtraction Angiography [...]", ECR, Feb. 2019.

Conventional DSA

Deep DSA

- Train on static cases where ground truth is conventional DSA
- During inference CNN can be applied to both static and dynamic cases

Deep DSA at $t = t_a$

Deep Tool Extraction Training Details

 Network structure: 2D attention U-Net¹ with projections of tools + patient as input >> Predict projection values of tool only

• Optimize L₁ loss using Adam²

$$\mathcal{L}_1 = \frac{1}{N} \sum_{x=1}^N |y_x - \hat{y}_x|$$

Stanford ¹Oktay, O. et al., "Attention U-net: Learning where to look [...]," Medical Imaging with Deep Learning, 2018. ²Kingma, D. P. & Ba, J., "Adam: A method for stochastic optimization," ICLR (2015).

Deep Tool Extraction Results

Good results for both simulated patient data and phantom measurements ➤ indicator how well the network generalizes

Deep Tool Extraction Results

We applied DTE to fluoroscopy data of interventions to test it on non-simulated patient data

 generalized well to unseen structures of interventional tools and background (i.e. contrast media)

Prediction

Deep Tool Reconstruction Simulations

Simulate CBCT data according to Zeego geometry with perfect prior

Guide wire dataset

- Center slices (512 × 512 px) of reconstructions of 1-16 guide wires
- Randomly positioned and randomly rotated

Stent dataset

- 20 reconstructions (512 × 512 × 768 px) of
 6 different stents each
- Variable strut thickness and stent diameter
- Randomly deformed, positioned and rotated

Deep Tool Reconstruction Measurements

Deep Tool Reconstruction Training Details

 Network structure: 2D Attention U-Net¹ with 13 slices of reconstruction as channel inputs ➤ Predict segmentation of center slice

- Pretrain on guide wire data
- Fine-tune on stent data (measured or simulated)
- Optimize soft Dice loss with Laplace smoothing using Adam²

$$\mathcal{L}_{\text{Dice}} = 1 - \frac{2\sum_{x} y_x \hat{y}_x + 1}{\sum_{x} y_x + \sum_{x} \hat{y}_x + 1}$$

• During inference threshold with $\theta = 0.5$

Stanford ¹Oktay, O. et al., "Attention U-net: Learning where to look [...]," Medical Imaging with Deep Learning, 2018. ²Kingma, D. P. & Ba, J., "Adam: A method for stochastic optimization," ICLR (2015).

Deep Tool Reconstruction Results

Combined Pipeline Overview

Combined Pipeline Results

Conclusion & Outlook

Deep Tool Extraction

- eliminates the need for a prior scan and registration step
 - This eases clinical workflow
 - ► No problems with patient motion
 - ► Complete pipeline is applicable in real time

Deep Tool Reconstruction

- can reconstruct interventional tools (here with focus on stents and guide wires) from only 4 x-ray projections with high accuracy
- is currently limited to the case where no motion of the tools occurs between the acquisition of the individual projections

Future work comprises

- investigating performance for other interventional tools such as catheters and coils
- testing our pipeline on clinical CBCT scans
- training the pipeline end-to-end

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. We are hiring for this and similar topics! Contact: marc.kachelriess@dkfz.de. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.