Optimal Iodine CNRD in a Whole Body Photon-Counting CT Scanner

Stefan Sawall^{1,2}, Sabrina Dorn^{1,2}, Joscha Maier^{1,2}, Sebastian Faby³, Monika Uhrig^{1,2}, Heinz-Peter Schlemmer^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University of Heidelberg, Germany ³Siemens Healthineers, Forchheim, Germany

SOMATOM CounT CT @ DKFZ

Gantry from a clinical dual source scanner

A: conventional CT detector (50 cm FOV) B: Photon counting detector (27.5 cm FOV)

Prototype, not commercially available.

Photon-Counting CT Counting Single Photons

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

Photon-Counting CT Spectral/Energy Information

140 kV spectrum as seen after having passed a 32 cm water layer.

Photon-Counting CT Spectral/Energy Information

dk1

140 kV spectra as seen after having passed a 32 cm water layer.

To evaluate the iodine CNRD improvements obtained using a statistically optimal weighting of photoncounting (PC) data compared to using a conventional energy-integrating (EI) CT detector.

Materials & Methods Phantoms

- Anthropomorphic thorax and • liver phantom
- Three different phantom sizes
 - Small (200 × 300 mm)
 - Medium
 - Large

- (250 × 350 mm)
- (300 × 400 mm)

Materials & Methods Image Acquisition and Reconstruction

Images are acquired at different tube voltages:

- 80 kV at 4.40 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- 100 kV at 9.20 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- 120 kV at 15.03 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- 140 kV at 21.76 mGy (CTDI_{vol 32 cm}) using 200 mAs_{eff}
- Pitch in all acquisitions was 0.6.
- Collimation for El (32×0.6 mm) and PC (32×0.5 mm) was matched as close as possible, i.e. geometric efficiency is 80% vs. 82%
- The thresholds were fixed at 20 keV and 50 keV, resulting in two bins: [20 keV, 50 keV] and [50 keV, max].

C/W=0 HU/400 HU

Materials & Methods Regions of Interest

Materials & Methods CNRD Computations

 The contrast-to-noise ratio (CNR) could be used as a figure of merit:

$$CNR = \frac{Contrast}{Noise} = \frac{|\mu_{ROI 1} - \mu_{ROI 2}|}{\sqrt{\sigma_{ROI 1}^2 + \sigma_{ROI 2}^2}}$$

 To account for different tube voltages and different dose levels we rather use the dose-normalized CNR (CNRD):

$$CNRD = \frac{Contrast}{Noise \cdot \sqrt{Dose}} = \frac{CNR}{\sqrt{Dose}}$$

Materials & Methods CNRD Optimization – Bin Combination

- To optimize CNR in case of two bins, we use an inverse variance weighting.
- In particular, weights for bin b are given as

with C_b being the contrast in the respective bin image and V_b being the variance in the ROIs used to compute C_b .

The resulting CNR is

$$CNR^2 = \frac{\left(\sum_b w_b C_b\right)^2}{\sum_b w_b^2 V_b}$$

PC with 1 Bin vs. El Potential Dose Reduction

PC with 2 Bins vs. El Potential Dose Reduction

PC with 1 Bin vs. El

Tube Voltage /kV	Small	Medium	Large	Average over all Phantoms			
Relative CNRD Improvement							
80	9.0%	7.9%	9.9%	8.9 %			
100	12.9%	8.8%	10.4%	10.7%			
120	16.4%	16.1%	18.3%	16.9%			
140	26.0%	23.4%	25.0%	24.8 %			
Potential Dose Reduction							
80	15.8%	14.2%	17.2%	15.7%			
100	21.6%	15.6%	17.9%	18.4%			
120	26.2%	25.8%	28.6%	26.9 %			
140	37.1%	34.3%	36.0%	35.8%			

PC with 2 Bins vs. El

Tube Voltage /kV	Small	Medium	Large	Average over all Phantoms			
Relative CNRD Improvement							
80	10.9%	9.6%	10.0%	10.2 %			
100	15.2%	11.6%	10.7%	12.5%			
120	19.7%	20.6%	22.3%	20.9%			
140	31.4%	30.3%	31.0%	30.9%			
Potential Dose Reduction							
80	18.6%	16.8%	17.4%	17.6%			
100	24.6%	19.7%	18.5%	20.9%			
120	30.2%	31.3%	33.2%	31.6%			
140	42.1%	41.1%	41.7%	41.6%			

Summary & Conclusion

- A combination of intrinsically acquired bin data results in an lodine-CNRD improvement of up to 30% compared to El.
- This translates to a potential dose reduction of up to 40%.
- A combination of bins results in an additional CNRD improvement of up to 11% compared to PC with 1 bin.

Photon-Counting Is Now!

- Higher spatial resolution due to
 - smaller pixels
 - lower cross-talk between pixels
- Lower dose/noise due to
 - energy bin weighting
 - no electronic noise
 - Swank factor = 1
 - smaller pixels

Spectral information on demand

- single energy
- dual energy
- multiple energy
- virtual monochromatic
- K-edge imaging

Summary & Conclusion

- A combination of intrinsically acquired bin data results in an lodine-CNRD improvement of up to 30% compared to EI.
- This translates to a potential dose reduction of up to 40%.
- A combination of bins results in an additional CNRD improvement of up to 11% compared to PC with 1 bin.

You cannot go wrong with photon-counting as patients of all sizes benefit from the favorable properties in terms of CNRD, noise and dose.

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] Gm<u>bH, Nürnberg, Germany.</u>