Respiratory Motion Compensation for Simultaneous PET/MR Using Strongly Undersampled MR Data

Christopher M Rank¹, Thorsten Heußer¹, Andreas Wetscherek¹, Martin T Freitag¹, Heinz-Peter Schlemmer¹, and Marc Kachelrieß¹

¹ German Cancer Research Center (DKFZ), Heidelberg, Germany

Introduction

- One major challenge in PET image reconstruction is patient motion (respiratory, cardiac, involuntary motion)
- Motion causes image blurring and an underestimation of the reconstructed activity up to 25%¹

3D PET

4D gated PET

- Gating
 - divide motion cycle into certain gates and reconstruct data from each gate separately
 - trade-off between temporal resolution and an appropriate SNR and CNR of the PET images

- Recent approach: PET/MR motion compensation (MoCo)
 - use MR information to estimate 4D motion vector fields (MVFs)
 - 4D MoCo PET reconstruction from 100% of raw data

Aim of Work

- Develop a method for respiratory motion compensation of PET images
- Use information from a strongly undersampled radial MR sequence with an acquisition time of 1 minute
- Difficulty: obtain high-fidelity MVFs from strongly undersampled MR data

Related Work

author	MR sequence	MR acquisition time / min	voxel size / mm ³	# of gates	motion estimation
Würslin et al. 2013	2D multi-slice	3.0	2.0×2.0×10.0	4	3D
Petibon et al. 2014	2D multi-slice	3.0	2.0×2.0×8.0	7	3D
Dutta et al. 2015	2D radial	5.5 to 7.0	2.0/2.3×2.0/2.3×5.0/8.0	6	3D
Fayad et al. 2015a	2D multi-slice	1.5	2.0×2.0×10.0	4	3D
Fayad et al. 2015b	2D multi-slice	3.0	2.0×2.0×10.0	4	3D
Fürst et al. 2015	radial stack-of-stars	10.0	1.7×1.7×5.0	5	3D
Grimm et al. 2015	radial stack-of-stars	3.0 to 10.0	1.7×1.7×5.0	5	3D
Manber et al. 2015	2D multi-slice	1.0 and 2.7	1.8×1.8×10.0ª	10 ^b	2D
proposed	radial stack-of-stars	1.0	1.6×1.6×4.5	20 ^{b,c}	3D

- ^a 25 mm gap between slice centers
 ^b discrimination between inhalation and exhalation
- ^c motion phases have an overlap of 50%

Data Acquisition and Processing

Simultaneous PET/MR acquisition at Biograph mMR

- tracer: fluorodeoxyglucose (¹⁸F-FDG)
- MR sequence: 3D-encoded gradient echo sequence with radial stack-of-stars sampling scheme and golden angle radial spacing
- Retrospective generation of undersampled MR raw data

 MR and PET data were sorted retrospectively into 20 overlapping motion phase bins (10% width)

Estimation of MVFs Schematic Overview (4D joint MoCo-HDTV¹)

[1] Rank, Heußer, Buzan, Wetscherek, Freitag, Dinkel, Kachelrieß. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med, early view online.

Estimation of MVFs Image Reconstruction - Cost Function^{1,2}

Cost function:

$$C = \|X_{pc}Sf - p\|_2^2 + \mu \operatorname{HDTV} f$$
raw data fidelity total variation

- X_{pc} : motion phase-correlated forward transform
 - : coil sensitivity profiles
 - : 4D image volume
- *p* : measured raw data
 - : weight

S

μ

- HDTV : spatial and temporal total variation
- The first term optimizes the raw data fidelity
- The second term improves the image sparsity by optimizing the spatial and temporal total variation
- Both terms are optimized in an alternating manner
- The cost function is optimized for the complete 4D volume including all motion phases

 Ritschl, Sawall, Knaup, Hess, Kachelrieß. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. *Phys. Med. Biol.* 2012.
 Rank, Heußer, Buzan, Wetscherek, Freitag, Dinkel, Kachelrieß. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. *Magn Reson Med*, early view online.

Estimation of MVFs Image Reconstruction - Update Equation¹

Update equation from raw data comparison for motion • phase t:

$$u_t^{(i+1)} = S^{\dagger} \mathsf{X}_{\mathrm{pc},t}^{\dagger} (\mathsf{X}_{\mathrm{pc},t} S f_t^{(i)} - p_t)$$

Modified update of image volume for motion phase t: •

$$f_t^{(i+1)} = f_t^{(i)} + \alpha \left((1-\beta)u_t^{(i+1)} + \beta \frac{1}{N_t} \sum_{t'} T_{t'}^t u_{t'}^{(i+1)} \right)$$

direct update

 $U_t^{(i)}$ *t*, *t* S, S[†]

- : update at iteration *i*
- : indices of motion phases
- : coil sensitivity profiles and pseudo-inverse operator
- $X_{pc,t}, X_{pc,t}^{\dagger}$: system matrix including motion phase-correlated forward and pseudo-inverse transform

 $f_t^{(i)}$: image at iteration *i*

MoCo update

- : measured raw data p_t
- T_{t}^{t} : warping operation mapping volume of motion phase t to t
- α, β : weights
- : number of motion phases N₊

[1] Rank, Heußer, Buzan, Wetscherek, Freitag, Dinkel, Kachelrieß. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med, early view online.

Estimation of MVFs Cyclic Deformable Registration¹

Motion estimation only between adjacent phases
 all other MVFs given by concatenation

- Incorporate additional knowledge
 - a priori knowledge of quasi periodic breathing pattern
 - non-cyclic motion is penalized
 - error propagation due to concatenation is reduced

Results of MR Reconstruction

4D gated gridding

4D MoCo¹

MVFs

MVFs

MoCo PET Image Reconstruction¹

MoCo OSEM update equation of motion phase t:

$$\lambda_t^{(i+1)} = \lambda_t^{(i)} \frac{1}{\sum_{t'} T_{t'}^t M_k^{\mathrm{T}}(\frac{1}{a_{t'}n})} \sum_{t'} T_{t'}^t M_k^{\mathrm{T}} \frac{p_{t'}}{(M_k T_t^{t'} \lambda_t^{(i)}) + a_{t'}(r_{t'}n + s)}$$

$\lambda_t^{(i)}$: image estimate at subiteration <i>i</i>
t, ť	: indices of motion phases
i	: subiteration index
k	: subset index, $k = i \mod K$
K	: total number of subsets
M_k, M_k	^T : system matrix including
	forward-/backprojection of subset k
a_t	: attenuation correction factors
p_t	: measured raw data (prompts)
r_t	: estimated randoms
S	: estimated scatter
n	: normalization factors
$T_{l}^{\prime\prime}$: warping operation mapping motion
	phase t to t

Results of PET Reconstruction (I)

4D MoCo

Results of PET Reconstruction (I)

4D MoCo

due to the high noise level of 4D gated PET, SUV_{mean} was systematically overestimated

Results of PET Reconstruction (II)

4D MoCo

Results of PET Reconstruction (II)

4D MoCo

due to the high noise level of 4D gated PET, SUV_{mean} was systematically overestimated

Summary and Outlook

- High quality PET respiratory MoCo is possible based on a 1 minute MR acquisition
- The strong undersampling requires to reconstruct MVFs and MR images in an alternating manner
- MoCo for PET improves PET quantification, image quality, temporal resolution and noise level
- Outlook: extension to 5D respiratory and cardiac MoCo

3D PET

5D double-gated PET

5D MoCo PET

5D MoCo MR

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This work was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany.

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

