Alpha-image reconstruction (AIR): A novel iterative image reconstruction algorithm with well-defined image quality metrics applied to clinical CT data

Sergej Lebedev, Stefan Sawall, Michael Knaup, and <u>Marc Kachelrieß</u>

> German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Aims

- Increase convergence speed of the AIR¹ algorithm.
- Demonstrate that conventional image quality metrics can be applied to the AIR images.

¹Hofmann, Sawall, Knaup, and Kachelrieß, "Alpha Image Reconstruction (AIR): A New Iterative CT Image Reconstruction Approach Using Voxel-Wise Alpha Blending", *Med. Phys.* 41(6), p. 061914 (14 pages), 2014

AIR minimizes a cost function:

Gradient descent approach:

$$\boldsymbol{\alpha}_{b}^{\nu+1} = \boldsymbol{\alpha}_{b}^{\nu} - \lambda \boldsymbol{\nabla}_{\alpha_{b}} C(\boldsymbol{\alpha}_{b}^{\nu}) \quad \boldsymbol{\nabla}_{C}(\boldsymbol{\alpha}_{b}) = \boldsymbol{f}_{b} \circ \left(\boldsymbol{\mathsf{X}}^{T} \boldsymbol{W} \left(\boldsymbol{\mathsf{X}} \left(\sum_{b=1}^{B} \boldsymbol{\alpha}_{b} \circ \boldsymbol{f}_{b} \right) - \boldsymbol{p} \right) \right) \\ + \boldsymbol{\nabla}_{\alpha_{b}} \left(\beta \sum_{b=1}^{B} TV(\boldsymbol{\alpha}_{b}) + \gamma \sum_{b=1}^{B} ||\boldsymbol{\alpha}_{b} - \boldsymbol{d}_{b}||_{2}^{2} \right)$$

• $\beta, \gamma = 0.01$

strictly convex.

Improved AIR

Improved AIR separates optimization into two steps:

Linear Combination: $oldsymbol{lpha} = (1- au) oldsymbol{lpha}_{SART} + au oldsymbol{lpha}_{Reg}$

• $\beta, \gamma = 0.01$ (different weighting between the penalty terms is possible)

Performance

 High quality images can be acquired after a couple 1000 iterations of the gradient descent implementation and after 200-300 iterations of the improved algorithm.

Convergence plots of the rawdata fidelity

Modulation Transfer Function

- If an MTF or another image quality metric is defined for the basis images it can be estimated for every voxel of the AIR image.
- MTF of a B50f/B10f-Kernel was measured at a Definition Flash Scanner.

$$\mathrm{MTF}(j,\rho) = \sum_{n}^{B} \alpha_{b}^{j} \mathrm{MTF}_{b}(\rho)$$

 $a_b{}^j$ = voxel j of weighting image b B = number of basis images MTF_b = MTF of the basis image b

dkfz.

Modulation Transfer Function

- The MTF is computed for each voxel.
- The "10%-value" of the MTF ρ_{10} for each voxel is displayed as a map.

Conclusion

- Optimized AIR algorithm improves performance by a factor of about 5-10.
- Noise can be significantly reduced while spatial resolution at edges is mostly maintained.
- Predictions for image quality metrics based on the basis images are possible.

Thank You!

Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software RayConStruct IR were provided by RayConStruct[®] GmbH, Nürnberg, Germany.