Dedicated Imaging of the Breast with a Clinical Photon-Counting CT System: A Phantom Study

# S. Sawall<sup>1</sup>, E. Baader<sup>1</sup>, S. Lehr<sup>1</sup>, L. T. Rotkopf<sup>2</sup>, J. Maier<sup>1</sup>, H.-P. Schlemmer<sup>2</sup>, S. Schönberg<sup>3</sup>, I. Sechopoulos<sup>4</sup>, and M. Kachelrieß<sup>1</sup>

<sup>1</sup>X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany <sup>2</sup>Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany <sup>3</sup>Clinic for Radiology and Nuclear Medicine, University Medical Center Mannhein, Mannheim, Germany <sup>4</sup>Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands



### **Motivation and Aim**

- Modern clinical photon-counting CT (PCCT) systems provide a spatial resolution that is much higher compared to previous generations of systems.
- This high spatial resolution might allow for the development of applications that were previously restricted to other modalities.
- We want to investigate from a physics point-of-view if such a system, the SOMATOM Naeotom Alpha (Siemens Healthineers, Germany), allows for breast imaging.
- We further aim at comparing the result to a dedicated cone-beam breast CT (BCT) system (Koning Corp., USA).



### Diagnostic PCCT Systems (as of November 2022)

|                         | Sensor<br>material         | Detector<br>pixel size at iso | FOM          | Bins | FDA | Pubs | Installations                                 |
|-------------------------|----------------------------|-------------------------------|--------------|------|-----|------|-----------------------------------------------|
| Canon                   | CdZnTe                     | ?                             | 50 cm        | 5    | no  | ?    | 1 prototype (Japan)                           |
| GE                      | Si, edge on                | ?                             | ?            | ?    | no  | ?    | 2 experimental setups<br>(Sweden, USA)        |
| Philips                 | CdZnTe                     | 275 × 275 µm                  | 50 cm        | 5    | no  | ≈22  | 1 experimental setup<br>(France)              |
| Siemens<br>CounT        | GOS/CdTe<br>(dual source)  | 700 × 600 μm<br>/250 × 250 μm | 50 / 27.5 cm | 4    | no  | ≈50  | 3 experimental systems<br>(Germany, USA)      |
| Siemens<br>CounT+       | CdTe                       | 150 × 176 μm                  | 50 cm        | 4    | no  | ≈11  | 3 prototypes (Czech<br>Republic, Sweden, USA) |
| <b>Siemens</b><br>Alpha | CdTe/CdTe<br>(dual source) | 2· 150 × 176 µm               | 50 / 36 cm   | 4    | Yes | ≈40  | About 100 worldwide                           |



## **Imaging Systems**

#### **Dedicated Breast CT<sup>1</sup> (BCT)**



#### **Photon-Counting CT (PCCT)**





### **Detector Pixel BCT<sup>1</sup> EICT, PCCT<sup>2</sup>**

#### BCT<sup>1</sup>

2048 × 1536 pixels pixel size 0.273 × 0.273 mm at iso 209 mm z-coverage **Force** 920 × 96 detector pixels pixel size 0.52 × 0.56 mm at iso 57.6 mm z-coverage Alpha (UHR)<sup>2</sup> 2752 × 120 pixels pixel size 0.15 × 0.176 mm at iso 24 mm z-coverage







#### Focus sizes of Vectron tube: 0.4×0.5 mm, 0.6×0.7 mm, 0.8×1.1 mm

<sup>1</sup>L. Brombal et al. Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study. Scientific Reports 9(1):17778, 2019. <sup>2</sup>J. Ferda et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. European Journal of Radiology 137:109614, 2021.



### **Breast Phantom**

- 14 slabs of adipose tissue-equivalent material
- Structures of interest:
  - Calcifications
  - Fibers
  - Masses









### **Phantom Orientation**

- In case of the dedicated BCT system, the breast phantom can be imaged by itself.
- In case of the PCCT, two phantom positions are used:
  - The phantom is placed on the table and oriented in longitudinal direction. I.e., the trajectory of the source is similar to the BCT.
  - The breast phantom is combined with a thorax phantom to simulate an actual patient in the clinical scanner.



### **Acquisition and Reconstruction**

#### • BCT:

- Images using the BCT system were acquired using a tube current of 50 mA and a tube voltage of 49 kV.
- BCT data were reconstructed onto a grid of 960×1008 isotropic voxels with a size of 0.19 mm using the FDK.

#### • PCCT:

- Images using the PCCT were acquired in UHR mode using tube currents of 41 mA to 350 mA, respectively, and a tube voltage of 120 kV.
- No dose modulation was used in any of the experiments.
- Photon-counting data were reconstructed onto slices with 1024×1024 voxels with a size of 0.195 mm, a slice thickness of 0.3 mm and a slice increment of 0.15 mm.
- All data were reconstructed using a B72u-kernel.
- Image reconstruction was performed using Quantum Iterative Reconstruction (QIR), strength 3.





#### **Breast and Thorax Phantom**

dkfz.

0.6 mm MIP, C = 300 HU, W = 1500 HU



**Breast and Thorax Phantom** 

**Breast Phantom Only** 



0.6 mm MIP, C = 300 HU, W = 1500 HU





### **Summary & Conclusions**

- If only the breast phantom is imaged, the BCT and the PCCT show comparable image quality.
- In particular, the CNR in case of the PCCT is better.
- If the breast phantom is combined with the thorax phantom, the PCCT allows for the identification of fibers similar to BCT.
- It also allows for the identification of the larger calcifications.
- Clinical photon-counting CT might be an interesting modality for breast imaging in the future.
- Dedicated scan modes and reconstruction algorithms might further improve image quality.



# Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct<sup>®</sup> GmbH, Nürnberg, Germany.