Dental Imaging in Clinical Photon-Counting CT at a Quarter of DVT Dose

S. Sawall^{1,2}, J. Maier¹, S. Sen³, H. Gehrig⁴, T.-S. Kim⁴, H.-P. Schlemmer^{1,2}, S. O. Schönberg⁵, M. Kachelrieß^{1,2}, and M. Rütters⁴

> ¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany ³University Hospital Schleswig Holstein, Kiel, Germany ⁴Heidelberg University Hospital, Heidelberg, Germany ⁵Mannheim University Hospital, Mannheim, Germany

Background

- Clinical PCCT systems offer an increased spatial resolution in the order of 150 µm compared to previous generations of CTs.
- This spatial resolution is in the order of dental cone-beam CT/digital volume tomography (DVT) systems.
- However, clinical systems provide several other potential benefits:
 - detectors with a high dynamic range
 - powerful x-ray tubes
 - higher absorption efficiency of the detector material
- With these properties, PCCT systems promise a dose reduction compared to classic energy-integrating systems.
- We want to compare the image quality of a standard-dose DVT protocol (Orthophos SL 3D) to a custom dose-reduced protocol in a clinical PCCT (Naeotom Alpha).

Imaging Systems

Digital Volume Tomography (DVT)

Photon-Counting CT (PCCT)

Sample Preparation

- A total of 10 porcine jaws are used in this study.
- Teeth were free of carious decay and restoration materials.
- The gingiva was intact.
- To allow for registration between DVT and PCCT, radio-opaque markers were attached to all samples.

Image Acquisition & Reconstruction

- We investigate a standard-dose (4 mGy CTDI_{16 cm}) protocol at the DVT in comparison to a custom dose-reduced (1 mGy) protocol at the PCCT.
- Data were acquired using a tube voltage of 85 kV in case of the DVT and using 90 kV in case of the PCCT.
- Image reconstruction was performed with the best available methods at each system:
 - Filtered backprojection (FBP) in case of the DVT
 - Quantum Iterative Reconstruction (QIR3) for the PCCT
- The spatial resolution of the PCCT was matched to the DVT by using an appropriate reconstruction kernel (Hr72, 15.7 lp/cm MTF_{10%}).

M - mandibulaD - dentineG - gingivaP - pulp cavityE - enamelPS - peridontal space

C = 900 HU, *W* = 4200 HU

M - mandibulaD - dentineG - gingivaP - pulp cavityE - enamelPS - peridontal space

C = 900 HU, *W* = 4200 HU

DVT (4 mGy)

PCCT (1 mGy)

Window/Level settings differ between imaging modalities.

Quantitative Results

CNR **CNRD** 20 20 Dentine-Enamel Dentine-Enamel Dentine-Bone Dentine-Bone * 15 15 * CNRD /mGy^{-1/2} CNR 10 10 5 5 0 0 DVT PCCT DVT PCCT

Reader Study

Image quality was assessed by two experienced readers (Gehrig, Rütters).

Summary & Conclusions

- Clinical PCCT offers an advantage in terms of image quality and radiation dose efficiency in comparison to conventional DVTs for dental diagnostics.
- This is further aided by reduced motion artifacts due to faster scan speeds and a prone position of the patient in clinical systems.
- However, access to PCCTs for dental diagnostics is mostly limited to university hospitals.

Thank You!

- This presentation will soon be available at www.dkfz.de/ct.
- Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).
- Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

The 8th International Conference on Image Formation in X-Ray Computed Tomography

August 5 – August 9, 2024, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

