Clinical Photon-Counting CT: The Small Pixel Effect and its Implications for Dose Reduction

> M. Fix^{1,2}, Y. Kayser^{1,2}, L. Klein^{1,2}, J. Maier^{1,2}, L. T. Rotkopf¹, H.-P. Schlemmer¹, S. O. Schönberg³, M. Kachelrieß^{1,2}, and S. Sawall^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany ³University Medical Center Mannheim, Germany

To assess the potential dose reduction achievable with the first clinical photon-counting CT (PCCT) in ultrahigh resolution mode (UHR) compared to acquisitions using standard (Std) mode.

Alpha Detector Modes

UHR Mode

<mark>S</mark> 1	S1	S1	<mark>S1</mark>
S1	S1	S1	S1
S1	S1	S1	S1
<mark>S1</mark>	<mark>S1</mark>	<mark>S1</mark>	S1
<mark>\$1</mark>	<mark>\$1</mark>	<mark>\$1</mark>	S1
<mark>S1</mark>	<mark>S1</mark>	<mark>S1</mark>	<mark>\$1</mark>

Naeotom Alpha at University Hospital Mannheim

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

Materials and Methods

- Abdomen phantoms of three different sizes (S, M, L)
 - Small: 20 cm × 30 cm
 - Medium: 25 cm × 35 cm
 - Large: 30 cm × 40 cm
- Tube voltage: 120 kV
- Slice thickness: 1 mm

- CTDI₃₂ at 4 mGy, 8 mGy, 12 mGy
- Collimation:
 - UHR : Acq. 120 × 0.2 mm
 - Std : Acq. 144 × 0.4 mm
- Image reconstruction:
 - Same target spatial resolution
 - Use of all 10 available body kernels
 - Only filtered backprojection (FBP)

Noise and Dose Reduction

- Noise is calculated from the standard deviation in an ROI in the spleen.
- The small pixel effect is the noise ratio of the two acquisition modes:

 $R = \frac{\sigma_{\rm Std}}{\sigma_{\rm UHR}}$

• The potential x-ray dose reduction is estimated as:

DoseReduction = $1 - \frac{\sigma_{\text{UHR}}^2}{\sigma_{\text{Std}}^2}$

Potential Dose Reduction

Medium Phantom

dkfz.

Drawbacks of UHR?

Power of Vectron X-Ray tube in Naeotom Alpha

Conclusions

- At sharp convolution kernels, UHR acquisitions allow for significant dose reduction compared to Std mode.
- Dose reduction curves diverge for smooth kernels:
 - Dose-dependent filter?
- Disadvantages of UHR acquisitions:
 - Lower tube power
 - Lower collimation
- Still, this study encourages the use of UHR mode, even if high resolution is not of interest, since the potential dose reduction is very prominent.

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

