Artifacts and Pitfalls in CT

Jan Kuntz

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Definition: Imaging Artifacts

Imaging artifacts are misrepresentations in a resulting image with no real counterpart

Artifacts in Computed Tomography

Relevant artifacts in diagnostic CT

- Sampling artifacts
- Geometric artifacts
- Motion artifacts
- Metal artifacts
- •

Artifacts with minor relevance for diagnostic CT

- Come-beam artifacts
- Scatter artifacts

Cone-Beam Artifacts

Scatter Artifacts

Cone-Beam CT

Diagnostic CT

GE Revolution CT

Philips IQon Spectral CT

Siemens Somatom Force

Toshiba Aquilion ONE Vision

In-plane resolution: $0.4 \dots 0.7 \text{ mm}$ Nominal slice thickness: $S = 0.5 \dots 1.5 \text{ mm}$ Tube (max. values): 120 kW, 150 kV, 1300 mA Effective tube current: mAs_{eff} = 10 mAs ... 1000 mAs Rotation time: $T_{rot} = 0.25 \dots 0.5$ s Simultaneously acquired slices: $M = 16 \dots 320$ Table increment per rotation: $d = 1 \dots 183$ mm Scan speed: up to 73 cm/s Temporal resolution: 50 ... 250 ms

Motion Artifacts of the Heart

These are minimized or avoided using fast scan, phase-correlated scan and/or reconstruction techniques.

10000

Standard Display

0,5×0,5×0,5 mm³ C = 50 HU, W = 400 HU

0,5×0,5×10 mm³ C = 50 HU, W = 400 HU

the construction of the co

Sliding Thin Slab (STS) Display

IeW

Linear Partial Volume Effect

S = 5 mm

Partial Volume Effect: Experiment

Partial Volume Effect: Experiment

Linear and Non-Linear Partial Volume Effect

Log domain average (linear PVE) Intensity domain average (non-linear PVE) Intensity minus log domain average

C = 0 HU, W = 100 HU

C = 40 HU, W = 200 HU

Blooming Artifacts and their Reduction

- This shows a dedicated blooming artifact reduction approach based on a discrete tomography reconstruction technique.
- Blooming artifacts are also suppressed by today's iterative reconstruction algorithms.

C = 0 HU, W = 1000 HU

Sampling Artifacts and their Removal

 $S_{eff} = 3 \text{ mm}, RI = 3 \text{ mm}$

 $S_{\text{eff}} = 3 \text{ mm}, RI = 1 \text{ mm}$

Always perform Overlapping Recons!

C = 0 HU, *W* = 800 HU

Windmill Artifacts and their Removal

ASSR reconstruction, p = 1.0, (C = 0 HU, W = 200 HU)

BH: Perfusion Analysis in CT

Beam hardening artifacts cause an underestimation of the CT-values leading to incorrect perfusion parameters!

Beam Hardening

- Measurement $q = -\ln \int dE w(E) e^{-\int dL \mu(\boldsymbol{r}, E)}$
- Single material approximation: $\mu(\boldsymbol{r}, E) = f_1(\boldsymbol{r})\psi_1(E)$

$$q = -\ln \int dE \, w(E) e^{-p_1 \psi_1(E)}$$

 \rightarrow cupping artifacts, first order BH artifacts \rightarrow cupping correction (water precorrection)

• Two material case: $\mu(\boldsymbol{r}, E) = f_1(\boldsymbol{r})\psi_1(E) + f_2(\boldsymbol{r})\psi_2(E)$

$$q = -\ln \int dE \, w(E) e^{-p_1 \psi_1(E)} - p_2 \psi_2(E)$$

 \rightarrow banding artifacts, higher order BH artifacts \rightarrow higher order BH correction

Patient Data Spiral 4-Slice CT Scan at 120 kV

Original Image

BHC Image

Original minus BHC

(C = 40 HU, W = 150 HU)

(C = 0 HU, W = 100 HU)

Red values indicate the range of CT-values within the corresponding ROI in HU

M. Kachelrieß, and W.A. Kalender, "Improving PET/CT attenuation correction with iterative CT beam hardening correction," IEEE Medical Imaging Conference Program, M04-5, October 2005.

(*C* = 40 HU, *W* = 150 HU)

(C = 0 HU, W = 100 HU)

M. Kachelrieß, and W.A. Kalender, "Improving PET/CT attenuation correction with iterative CT beam hardening correction," IEEE Medical Imaging Conference Program, M04-5, October 2005.

Metal artifacts are

+ increased susceptibility to sampling artifacts and motion.

Linear Interpolation MAR (LIMAR)

W. A. Kalender, R. Hebel, and J. Ebersberger, "Reduction of CT artifacts caused by metallic implants," Radiology 164(2): 576–577, 1987.

Normalized MAR (NMAR)

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 0 HU, W = 500 HU)

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 500 HU, W = 1500 HU)

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top row: (C = 100 HU, W = 750 HU). Bottom row: (C = 1000 HU, W = 4000 HU)

FSMAR: Scheme

FSMAR: Results

Uncorrected

LIMAR

NMAR

Patient with spine fixation, Somatom Definition, (C=100/W=1000).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Frequency split metal artifact reduction (FSMAR) in computed tomography", Med. Phys. 39(4):1904-1916, 2012.

NMAR: Results

Uncorrected

NMAR

Bone removal (with scanner software), (C=40/W=500).

		0	rdiar —			
	-C A	- V4	scul	Topogram	Cut • Keep	
	E		RT	Auto reference lines	None	
		1	ecialli	Vvarktiov	(-
Ŷ			ivatu —	APILanguage	German	
OK Cancel						
REA (Adult)	15.04.10-15:50:43-8	STD-Specials	REA (Adu 1	5.04.10-15:50:43-S	TC Total mAs:	(
Topo RICHTUNG IIIIIII	Reconjob 🤱	23456	78 S	eries description Spirale	e 2.0 J30s 3	- 1
Topogram	Slice 2.0 mm 🗾			Advanced reconstruction options		
Topogram	ADMIRE 🗸	Strer	igth 3 🛨			
	Algorithm J3	80s medium smcj	IMAR 🔽	Artifact correction	None	-
Rekons 3/3	FAST - Window B	ase Orbita	1		None Neuro coils Dental fillings Spine implants	
Pause		FoV	226 mm 🛨	Image order	Shoulder implants Pacemaker	1
ROI A. descendens	15 71	Center X	0 mm +		Thoracic coils Hip implants	
PreMonitoring	Dwerview	Center Y	-5 mm 🛨	No.	Extremity implants	192 -
	Mirroring N	one	-	Comments Nativ		-
Hold Share	Entended CiTisca	e				-
Reson Reson	Routine	Scan	Recon	Auto Tasking		
	Autotransfer is disabled o	lue to emergency i	registration		1)-Apr-2015 1

Truncation Artifacts

180°

Truncation Artifacts

Sinogram, Rawdata

Adaptive Detruncation Method (ADT)

Adaptive Detruncation Method (ADT)

Data consistency

$$l_1 = h_2 / \overline{\mu}$$
$$A_1 = A_2$$

Smooth extrapolation

$$\sqrt{a\xi^2+b\xi+c}$$

Example : 2 × 100 suppressed columns

 $M = -1.8 HU, \sigma = 8.6 HU$ $M = -0.8 HU, \sigma = 1.1 HU$

This presentation will soon be available at www.dkfz.de/ct. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

