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In the order of 1000 projections
with 1000 channels are acquired
per detector slice and rotation.
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Data Completeness
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Each object point must be viewed by an angular interval of 
180° or more. Otherwise image reconstruction is not possible.



Data Completeness
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Any straight line through a voxel must be intersected by the 
source trajectory at least once.



Emission vs. Transmission

Emission tomography

• Infinitely many sources

• No source trajectory

• Detector trajectory may be an 
issue

• 3D reconstruction relatively 
simple

Transmission tomography

• A single source

• Source trajectory is the major 
issue

• Detector trajectory is an 
important issue

• 3D reconstruction extremely 
difficult



Analytical Image Reconstruction
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In-Plane Parallel Beam Geometry

Measurement:
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Filtered Backprojection (FBP)

Measurement:

Fourier transform:

This is the central slice theorem:

Inversion:

Important: K(0) = 0 and K´(0±) = ±1



Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.

2. Backproject the filtered data into the image:

Reconstruction kernels balance between spatial resolution and image noise.

Smooth Standard



0° 36° 72°

108° 144° 180°



Start of
spiral scan

Scan
trajectory

Direction of
continuous

patient
transport

0

0

z

t

1996: 1998: 2002: 2004:
1×5 mm, 0.75 s 4×1 mm, 0.5 s 16×0.75 mm, 0.42 s 2⋅32×0.6 mm, 0.33 s

Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)

collimation C

table increment d



Spiral z-Filtering for Multi-Slice CT
M=2, …, 6

Spiral z-filtering is collecting data points weighted with a triangular or 
trapezoidal distance weight to obtain circular scan data.

z
For complete data:

We find:
p ≤ 1.4 for 52° fan angle
p ≤ 1.5 for 43° fan angle



CT Angiography:
Axillo-femoral
bypass

M = 4

120 cm in 40 s

0.5 s per rotation
4×2.5 mm collimation
pitch 1.5
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1×5 mm
0.75 s

4×1 mm
0.5 s

16×0.75 mm
0.375 s

256×0.5 mm
<< 1 s ?

2⋅32×0.6 mm
0.375 s

The Cone-Beam Problem



The ASSR Algorithm

γ

Rα
3 intersections

for each R-plane

n

R

z d

τ

Kachelrieß et al., Med. Phys. 27(4), April 2000

Mean deviation at distance RM:       ∆ ≈ 0.007⋅d

at distance RF:       ∆ ≈ 0.014⋅d



Comparison to Other Approximate Algorithms
180°LI d=1.5mm Π d=64mm MFR d=64mm ASSR d=64mm

H. Bruder, M. Kachelrieß, S. Schaller. SPIE Med. Imag. Conf. Proc., 3979, 2000



CT-Angiography
Sensation 64 spiral scan with 2⋅32×0.6 mm and 0.375 s



• Approximate

• Similar to 2D reconstruction:
– row-wise filtering of the rawdata

– followed by backprojection

• True 3D volumetric 
backprojection along the 
original ray direction

• Compared to ASSR:
– larger cone-angles possible

– lower reconstruction speed

– requires 3D backprojection hardware

Flat Detector CT =
Feldkamp-Type Reconstruction

volume

ray

3D backprojection
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Flat Detector CT =
Perspective Geometry



Cone-angle Γ = 6° Cone-angle Γ = 14° Cone-angle Γ = 28°

zz z

Cone-Beam Artifacts

focus trajectory

Defrise phantom



Iterative Image Reconstruction



Update 
equation

Model

This is an iterative solution.



Influence of Update Equation and Model



Kaczmarz‘s Method = ART

512 iterations 512 iterations



apply inverse model

apply forward model



Direct vs. Filtered Backprojection



Flavours of Iterative Reconstruction

• ART

• SART  

• MLEM

• OSC

• and hundreds more …



Bayesian Reconstruction
• Finding an image f such that the probability of f given the 

projection data p, i.e.              , is maximized is difficult.

• Since we know from Bayes that

we may as well maximize             , because without further 
information the a priori probabilities introduce nothing 
but a positive factor of proportionality.

• If we have further information, e.g. on f, we may 
incorporate this prior knowledge and maximize the a 
posteriori probability                        instead.

• In log domain this becomes

ML MAP

= statistical 
reconstruction



Objective Function: Gauß Model

• Assume that the attenuation is Gaussian-distributed

i.e.                                                       with                .

• Consequently, the likelihood for all N measured 
signals is (                   ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.



Gauß Model (continued)

• This leads us to minimizing

which means solving

• This must be done numerically (e.g. Jacobi method) 
and the solutions are often of type



Update Equation: Gauß Model

• ART

• SART

• and many more …



Objective Function: Poisson Model

• Assume that the intensities are Poisson-distributed

which means                                with                         .

• Consequently, the likelihood for all N measured 
signals is (                          ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.



Update Equation: Poisson Model

• MLEM

• OSC

• and many more …



Iterative Reconstruction: Parameters
• Image/object representation

– Pixel centers

– Pixel area

– Blobs

– Sampling density (pixel size, pixel locations, …)

• Forward model (forward projection)
– Joseph-type, Bresenham-type, distance-driven-type, …

– Needle beam (infinitely thin ray), many needle beams per ray, …

– Beam shape (varying beam cross-section, angular blurring, …)

– Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, …)

• Objective function, update equation
– Statistical model (Gaussian, Poisson, shifted Poisson, …)

– Regularisation (edge-preserving, …)

– Artifact reduction

• Inverse model (backprojection)
– Transpose of forward model

– Pixel-driven backprojection

– Filtered backprojection

– …



Image Representation



Image Representation



Image Representation



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Image Representation and 
Forward Model are Linked!

Joseph’s forward projector



• Aim: less artifacts, lower noise, lower dose

• Iterative reconstruction
– Reconstruct an image.

– Does the image correspond to the rawdata?

– If not, reconstruct a correction image and continue.

• SPECT + PET are iterative for a long time!

• CT product implementations
– ASIR (adaptive statistical iterative reconstruction, GE)

– iDose (Philips)

– IRIS (image reconstruction in image space, Siemens)

– AIDR 3D (adaptive iterative dose reduction, Toshiba)

– VEO, MBIR (model-based iterative reconstruction, GE) 

– IMR (iterative model reconstruction, Philips)

– SAFIRE, ADMIRE (advanced modeled iterative reconstruction, Siemens)

– FIRST (forward projected model-based iterative reconstruction solution, 
Toshiba)

Iterative Reconstruction



apply inverse model

apply forward model

• Rawdata regularization: adaptive filtering1, precorrections, filtering of 
update sinograms...

• Inverse model: backprojection (RT) or filtered backprojection (R-1). In 
clinical CT, where the data are of high fidelity and nearly complete, one 
would prefer filtered backprojection to increase convergence speed.

• Image regularization: edge-preserving filtering. It may model physical 
noise effects (amplitude, direction, correlations, …). It may reduce noise 
while preserving edges. It may include empirical corrections.

• Forward model (Rphys): Models physical effects. It can reduce beam 
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, …

regularize
image

regularize
rawdata

1M. Kachelrieß et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001



Conventional FBP with rawdata denoising (all vendors) ASIR, ASIR-V (Ge), AIDR3D (Toshiba), IRIS (Siemens), 
iDose (Philips), SnapShot Freeze (GE), iTRIM (Siemens)

Veo/MBIR (Ge) IMR (Philips), SAFIRE, ADMIRE (Siemens), FIRST (Toshiba)

M. Kachelrieß. Current Cardiovascular Imaging Reports 6:268–281, 2013



Siemens Standard

σ = 17.6 HU 

SAFIRE VA40

σ = 7.8 HU 

IRIS VA34

σ = 12.3 HU 

Plain FBP

σ = 26.8 HU 

CT images provided by Siemens Healthcare, Forchheim, Germany



FBP ASIR Veo

Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA.



Filtered Backprojection iDose 60%

104 ± 66 HU 104 ± 41 HU

Courtesy of Dr. Waldemar Hosch, Zürich, Switzerland.



FBP IMR

Courtesy of Dr. Thomas Köhler, Philips, Germany.



B26f I26f  strength 4 I36f strength 4

Filtered Backprojection SAFIRE SAFIRE

Courtesy of Siemens Healthcare, Forchheim, Germany.



Filtered Backprojection AIDR3D

Courtesy of Dr M Chen, NHLBI, National Institutes of Health, USA

152 ± 53 HU 150 ± 29 HU



Courtesy of Dr. Patrik Rogalla, UHN, Toronto, Canada

Filtered Backprojection AIDR3D mild AIDR3D standard



Figure provided by Siemens Healthcare, Forchheim, Germany



Iterative reconstruction and restoration

at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany

Conventional reconstruction 

at 100% dose



Iterative reconstruction and restoration

at 40% dose

Conventional reconstruction 

at 100% dose

Images provided by Siemens Healthcare, Forchheim, Germany



Iterative reconstruction and restoration

at 40% dose

Conventional reconstruction 

at 100% dose

Images provided by Siemens Healthcare, Forchheim, Germany



Vendor’s Improvements
in Iterative Reconstruction

Standard
B40

SAFIRE
I40/5

ADMIRE
I40/5

Images provided by Siemens Healthcare, Forchheim, Germany



Vendor’s Improvements
in Iterative Reconstruction

Standard
B64

SAFIRE
l64/5

ADMIRE
l64/5

Extremely low dose case:  CTDIvol = 0.04 mGy, DLP = 1.64 mGy⋅cm, Deff = 0.025 mSv

Images provided by Siemens Healthcare, Forchheim, Germany



Vendor’s Improvements
in Iterative Reconstruction

Akagi et al. Full Iterative Reconstruction Optimized for Specific Organs -
Principle and Capabilities. RSNA 2015. 

Toshiba Aquilion ONE ViSION FIRST Edition



Usual Assumption: 
CT is Linear and Translation Invariant

• PSF and MTF are well-defined

• Noise is well-defined

• Noise and spatial resolution are related

• Parameters are valid for all objects

• Simple phantoms can be used to assess image quality

• …



Simple Example 1 
(Taken at the Siemens Somatom Flash DSCT Scanner)

• Semiantropomorphic phantom
– 20 cm × 30 cm thorax phantom of 20 cm length with 2.5 cm water extension 

ring, totalling to 25 cm × 35 cm size

– 10 cm QRM 3D medium contrast insert with 40 HU background and 20 HU 
lesions (at 120 kV)

• Scan and recon parameters
– 128 × 0.6 mm collimation

– 120 kV

– p = 0.6

– trot = 1.0 s

– Seff = 0.6 mm

– 1 full dose scan with 1100 mAseff

– 25 low dose scans with 44 mAseff each

– FBP ( = analytical): B30s, B50s

– SAFIRE ( = iterative): I30s and I50s, strengths 3 and 5

– Averaging of 25 low dose scans after reconstruction

– Mean±StdDev in large medium contrast lesion

– Display at C = 50 HU and W = 100 HU

C = 50 HU, W = 100 HU

Low Dose Average High Dose



Single Low Dose Scan
FBP (B kernels) Iterative (strength 3) Iterative (strength 5)

50s

30s

16 ± 55 HU

20 ± 207 HU

20 ± 40 HU

22 ± 132 HU

18 ± 25 HU

22 ± 76 HU



Average of 25 Low Dose Scans

19 ± 12 HU

20 ± 41 HU

19 ± 8 HU

20 ± 27 HU

19 ± 5 HU

18 ± 16 HU

50s

30s

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)



High Dose Scan

18 ± 10 HU

17 ± 40 HU

18 ± 6 HU

19 ± 25 HU

19 ± 4 HU

18 ± 13 HU

50s

30s

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)



Simple Example 2
• Same phantom as in example 1

• Same scans as in example 1

• Calculation of sigma images from the 25 independent samples
– Compute unbiased estimator for the sample variance for each pixel

– Take the square-root of each pixel’s estimated variance 

FBP (B30s) SAFIRE (I30s strength 3) SAFIRE (I30s strength 5)

C = 40 HU, W = 50 HU

MK1



Slide 153

MK1 Anmerkung von Stefan S.: Warum sind bei dem sigma FBP Bild die Kanten außen sichtbar und zur Lunge hin verwischt?

Idee: außen wirkt das Gibbs Phänomen und die CT-Werte werden nach unten hin abgeschnitten (-1024 HU. Die Lunge hat einen CT-Wert von ~
-800 HU, dort wird nichts abgeschnitten)
Prof. Dr. Marc Kachelrieß; 24.06.2015



Simple Example 3
(Taken at the Siemens Somatom Flash DSCT Scanner)

• Abdomen phantom + small fat ring

• Tube voltage U = 120 kV

• Slice thickness Seff = 0.6 mm

• Pitch p = 0.6

• Variation of the effective tube current 
– mAseff = 100 mAs … 550 mAs

– DLP = 57 … 312 mGy⋅cm

• Noise was measured in VOIs



Image Noise vs. mAseff

B30f

B70f

I30f 3

I70f 3

I30f 5

I70f 5

300 HU

150 HU

σ

1/sqrt(I⋅Trot / p)
1/sqrt(100 mAs)

0
1/sqrt(400 mAs)



Conclusions on the Simple Examples
and General Comments

• The (SAFIRE) iterative reconstruction
– reduces noise in low and medium contrast regions

– reduces spatial resolution in low and medium contrast regions

– preserves noise in high contrast regions (edges)

– preserves spatial resolution in high contrast regions (edges)

– shows the conventional square-root relation of image noise and 
dose

• Other iterative standard reconstruction algorithms
– also attempt to reduce noise and preserve resolution

– will also not reduce noise at edges

– may behave different in detail

– may deviate more or less from the square-root behaviour

• Future iterative reconstructions algorithms
– may compensate for motion

– may use stronger a priori knowledge (e.g. dictionaries)

– …



Analysis of GE‘s MBIR (Veo) 
Iterative Reconstruction Algorithm

Li et al., MedPhys 41(7), July 2014



Contrast Dependency of the PSF
(of GE’s FBP and Veo Algorithms)

Li et al., MedPhys 41(7), July 2014



Dose Dependency of the PSF
(of GE’s FBP and Veo Algorithms)

Li et al., MedPhys 41(7), July 2014



Conclusions on Li et al. (Veo Algorithm)

• Our previous findings (from the simple examples) are 
confirmed.

• Spatial resolution is a function of
– location

– contrast

– dose

– …



Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


