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Fan-Beam Geometry
(transaxial / in-plane / x-y-plane)
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Acquisition
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Sinogram, Rawdata




Sensation

In the order of 1000 projections
with 1000 channels are acquired
per detector slice and rotation.
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Data Completeness
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Each object point must be viewed by an angular interval of
180° or more. Otherwise image reconstruction is not possible.




Emission vs. Transmission

Emission tomography Transmission tomography
Infinitely many sources « A single source

No source trajectory - Source trajectory is the major
issue

Detector trajectory may be an -+ Detector trajectory is an
issue important issue

3D reconstruction relatively « 3D reconstruction extremely
simple difficult




Analytical Image Reconstruction




Solution




2D: In-Plane Geometry

Decouples from longitudinal geometry
Useful for many imaging tasks
Easy to understand

2D reconstruction
— Rebinning = resampling, resorting
— Filtered backprojection




Fan-beam geometry Parallel-beam geometry

lateral
rebinning







Fan-beam geometry Parallel-beam geometry

/5
%. 5 i
A i
Y o B ¢
i Ay S




In-Plane Parallel Beam Geometry

Measurement:
p(9,§) = Rf(9,§) = [dxdy f(z,y)d(x cos? + ysind — &)




Filtered Backprojection (FBP)

Measurement: p(J,&) = /dfvdy f(z,y)d(x cosv + ysinv — &)

Fourier transform:
/dfp(ﬁ, 5)6—277&5’& _ /da:dy f(z, y)e—Qmu(az cos ¥ + y sin V)

This is the central slice theorem: P(9,u) = F(ucos ¥, usin)

Inversion: f(x,y) :/dﬁ/du \u\P(ﬁ,u)eQmu(m cos ¥ + ysind)
0 —oo

E=x cos V+ysin




Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.
2. Backproject the filtered data into the image:
\ 1

\

Smoofh Standard

Reconstruction kernels balance between spatial resolution and image noise.







Scan

Start of _
spiral scan / trajectory

table increment
number of slices - slice thickness

Direction of
continuous
patient
transport

1996: 1998: 2002: 2004
1IX5mm,0.75s 4X1mm,0.5s 16X0.75 mm,042s 2.-32x0.6 mm, 0.33 s

Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)



360° LI Spiral z-Interpolation
for Single-Slice CT (M=1)

_ 4
P=7r5 <

Spiral z-interpolation is typically a linear interpolation between points
adjacent to the reconstruction position to obtain circular scan data.




without z-interpolation with z-interpolation




180° LI Spiral z-Interpolation
for Single-Slice CT (M=1)

180 ° Spiral z-interpolation interpolates between direct and
complementary rays.




Scan

Startof [ | :
. /| A\ W i r
spiral scan | /trajecto y

Direction of 0 : ;

continuous
patient
transport

1996: 1998: 2002: 2004:
IX5mm,0.75s 4X1mm,05s 16X0.75mm,042s 2.32x0.6 mm, 0.33 s



Spiral z-Filtering for Multi-Slice CT
M=2, ..., 6

d
_ ¢ 1
P= 75 S0

2= 2Zg

Spiral z-filtering is collecting data points weighted with a triangular or
trapezoidal distance weight to obtain circular scan data.




CT Angiography:
Axillo-femoral
bypass

M=4

120cmind40s

0.5 s per rotation
4x2.5 mm collimation
pitch 1.5




RSNA 1989
SSCT (M =1)

‘: - -"\'_ ' ‘ ; ./J.; |
RSNA 2001
MSCT (M = 16)




The Pitch Value
is the Measure for Scan Overlap

The pitch is defined as the ratio of the table increment per full rotation
to the total collimation width in the center of rotation:

o d d
P=¢C =~ Ms
Recommended by and in:

IEC, International Electrotechnical Commision: Medical electrical
equipment — 60601 Part 2-44: Particular requirements for the safety of
x-ray equipment for computed tomography. Geneva, Switzerland, 1999.

Examples:
» p=1/3=0.333 means that each z-position is covered by 3 rotations (3-fold overlap)

« p=1 means that the acquisition is not overlapping
* P=pmax Means that each z-position is covered by half a rotation




Scan

Startof [ | :
. /| A\ W i r
spiral scan | /trajecto y

Direction of 0 : ;

continuous
patient
transport

1996: 1998: 2002: 2004:
IX5mm,0.75s 4X1mm,05s 16X0.75mm,042s 2.32x0.6 mm, 0.33 s



The Cone-Beam Problem

I >
» -
2 e
. 4 - !
; E P -5 r ..f_‘u“.:__

L
LT AT o ”‘g

1XxX5mm 4x1 mm 16x0.75 mm 2-32x0.6 mm 256%0.5 mm
0.75 s 0.5s 0.375 s 0.375 s 0 -




Advanced single-slice rebinning in cone-beam spiral CT

Marc KachelrieR?
Institure of Medical Physics, Universiny of Erlangen—Niirnberg, Germany

Stefan Schaller
Siemens AG, Medical Engineering Group, Forchheim, Germany

Willi A. Kalender

Institute of Medical Physics, Universirv of Erlangen—Ninberg, Germany
(Received 11 August 1999: accepted for publication 12 January 2000)

To achieve higher volume coverage at improved z-resolution in computed tomography (CT), sys-
tems with a large number of detector rows are demanded. However. handling an increased number
of detector rows. as compared to today’s four-slice scanners. requires to accounting for the cone
geometry of the beams. Many so-called cone-beam reconstruction algorithms have been proposed
during the last decade. None met all the requirements of the medical spiral cone-beam CT in regard
to the need for high image quality. low patient dose and low reconstruction times. We therefore
propose an approximate cone-beam algorithm which uses virtual reconstruction planes tilted to
optimally fit 180° spiral segments. i.e.. the advanced single-slice rebinning (ASSR) algorithm. Our
algorithm is a modification of the single-slice rebinning algorithm proposed by Noo er al. [Phys.
Med. Biol. 44, 561-570 (1999)] since we use tilted reconstruction slices instead of transaxial slices
to approximate the spiral path. Theoretical considerations as well as the reconstruction of simulated
phantom data in comparison to the gold standard 180°LI (single-slice spiral CT) were carried out.
Image artifacts, z-resolution as well as noise levels were evaluated for all simulated scanners. Even
for a high number of detector rows the artifact level in the reconstructed images remains compa-
rable to that of 180°LL. Multiplanar reformations of the Defrise phantom show none of the typical
cone-beam artifacts usually appearing when going to larger cone angles. Image noise as well as the
shape of the respective slice sensitivity profiles are equivalent to the single-slice spiral reconstruc-
tion, =-resolution is slightly decreased. The ASSR has the potential to become a practical tool for
medical spiral cone-beam CT. Its computational complexity lies in the order of standard single-slice
CT and it allows to use available 2D backprojection hardware. © 2000 American Association of
Physicists in Medicine. [ S0094-2405(00)00804-X]

Key words: computed tomography (CT). spiral CT. multi-slice CT. cone-beam detector systems.
3D reconstruction

KachelrieB et al., Med. Phys. 27(4), April 2000 dkfz.



ASSR: Advanced Single-Slice Rebinning

3D and 4D Image Reconstruction for Medium Cone Angles

First practical solution to the cone-beam problem
in medical CT

Reduction of 3D data to 2D slices
Commercially implemented as AMPR
ASSR is recommended for up to 64 slices

Do not confuse
the transmission algorithm ASSR
with
the emission algorithm SSRB!

KachelrieB et al., Med. Phys. 27(4), April 2000




The ASSR Algorithm

Mean deviation at distance R);:
at distance R:

A=0.007-d
A=0.014-d

KachelrieB et al., Med. Phys. 27(4), April 2000




d—Filtering in the Image Domain
d

_Primary,
——o J°°

* No in-plane interpolations
* Interpolation along d
* Arbitrary d-filter width

KachelrieB et al., Med. Phys. 27(4), April 2000




Comparison to Other Approximate Algorithms
180°LI d=1.5mm ITd=64mm MFR d=64mm

H. Bruder, M. Kachelrie3, S. Schaller. SPIE Med. Imag. Conf. Proc., 3979, 2000




. Patient Images -
i with ASSR

J - High image quality |
i - High performance |

| * Use of available
' 2D reconstruction
hardware

* 100% detector usage ¢
* Arbitrary pitch

* Sensation 16

* 0.5 s rotation

* 16x0.75 mm collimation
» pitch 1.0

e 70cmin29s

1.4 GB rawdata

« 1400 images
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CTA, Sensation 16

Data courtesy of Dr. Michael Lell, Erlangen, Germany




CT-Angiography

Sensation 64 spiral scan with 2.32x0.6 mm and 0.375 s
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Feldkamp-Type Reconstruction

Approximate

Similar to 2D reconstruction:
— row-wise filtering of the rawdata
— followed by backprojection

True 3D volumetric
backprojection along the
original ray direction

Compared to ASSR:

— larger cone-angles possible
— lower reconstruction speed
— requires 3D backprojection hardware
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3D backprojection




Extended parallel backprojection for standard three-dimensional
and phase-correlated four-dimensional axial and spiral cone-beam
CT with arbitrary pitch, arbitrary cone-angle, and 100% dose usage

Marc KachelrieR,® Michael Knaup, and Willi A. Kalender
Institute of Medical Physics, University of Erlangen—Niimberg, Germany

(Received 12 September 2003: revised 7 April 2004; accepted for publication 7 April 2004;
published 27 May 2004)

We have developed a new approxmmate Feldkamp-type algorithm that we call the extended parallel
backprojection (EPBP). Its main features are a phase-weighted backprojection and a voxel-by-voxel
180° normalization. The first feature ensures three-dimensional (3-D) and 4-D capabilities with one
and the same algonthm; the second ensures 100% detector usage (each ray 1s accounted for). The
algorithm was evaluated using simulated data of a thorax phantom and a cardiac motion phantom
for scanners with up to 256 slices. Axial (circle and sequence) and spiral scan trajectories were
investigated. The standard reconstructions (EPBPStd) are of high quality, even for as many as 256
slices. The cardiac reconstructions (EPBPCI) are of high quality as well and show no significant
deterioration of objects even far off the center of rotation. Since EPBPCI uses the cardio interpo-
lation (CI) phase weighting the temporal resolution is equivalent to that of the well-established
sigle-slice and multislice cardiac approaches 180°CI, 180°MCI, and ASSRCI. respectively, and
lies in the order of 50 to 100 ms for rotation times between 0.4 and 0.5 s. EPBP appears to fulfill
all required demands. Especially the phase-correlated EPBP reconstruction of cardiac multiple
circle scan data 1s of high interest, e.g.. for dynamic perfusion studies of the heart. © 2004
American Association of Physicists in Medicine. [DOI: 10.1118/1.1755569]

Key words: Cone-beam CT (CBCT), cardiac imaging, 4-D reconstruction, image quality

. INTRODUCTION adopted and used to reconstruct cardiac data for scanners
with more than four slices.

However, there are several restrictions to these ap-
proaches that may inhibit their use in scanners with signifi-

The ongoing development of medical cone-beam CT
(CBCT) scanners requires providing cone-beam reconstruc-
tion aloorithms adeguate for medical poses. These must

Kachelrie3 et al., Med. Phys. 31(6), June 2006

dkfz.



Extended Parallel Backprojection (EPBP)

3D and 4D Feldkamp-Type Image Reconstruction
for Large Cone Angles

Trajectories: circle, sequence, spiral
Scan modes: standard, phase-correlated
Rebinning: azimuthal + longitudinal + radial

Feldkamp-type: convolution + true 3D backprojection
100% detector usage
Fast and efficient

Kachelrie3 et al., Med. Phys. 31(6), June 2006




longitudinally
rebinned = — =
= -
detector

KachelrieB et al., Med. Phys. 31(6), Jurresa




The complicated
pattern of overlapping
data ...

... Will become even
more complicated with
phase-correlation.

= Individual voxel-by-
voxel weighting and
normalization.




The 180° Condition
Y.

J-dé‘w(z?) =7 180°in 3 segments

and

D w(d+km) =1

The (weighted) contributions to each object point
must make up an interval of 180° and weight 1.




KachelrieB et al., Med. Phys. 31(6): 1623-1641, 2004

+ (0/300)




EPBP Std EPBP CI 0% K-K EPBP CI 50% K-K

Patient example, 32x0.6 mm, z-FFS, p=0.23, t,=0.375s.



Iterative Image Reconstruction




Model

(ajn + Awn)Q — Y
2

. ,
Ty = 2T AT, + 2C, = Y

mi—k?anxn

Update
equation




0.5(3 —22)/z,

o = 1.

r1 = 2.

To = 1.79

rs3 = 1.73214
rs = 1.73205
xs = 1.73205
xeg = 1.73205
xr = 1.73205
rg = 1.73205

0.4(3 —z2)/z,

Influence of Update Equation and Model

0.5(3 —z=1)/z,

o = 1.

r1 = 1.8

xo = 1.746067
x3 = 1.73502
rqs = 1.73265
rs = 1.73217
re = 1.73207
x7 = 1.732006
rg = 1.73205

xo = 1.

r1 = 2.

ro = 1.67823
r3 = 1.68833
rqs = 1.68723
rs = 1.68734
re = 1.68733
r7 = 1.68733
rgs = 1.68733




Analytische Rekonstruktion

1. Problem p(¥, &) = /dacdy f(x,y)d(xcost + ysing — &)

T

2. Losungsformel  f(x, ) :/dﬁ p(9,&) * k()

0

E=x cos ¥4y sin ¥

3. Diskretisierung f=R'" -K-p=R'. (k *xp)

Klassische iterative Rekonstruktion

1. Problem p(, &) = /da:dy f(z,y)d(xcost + ysin — &)

2. Diskretisierung p=~R: f

3. Losungsformel f,,+1 f +




Forward Projection

CT System Matrix

R-f=p

Radon or x-ray image to be measured
transform reconstructed rawdata

TlM\ /f1\

T2 M f2

TI\;M) \fM/




Kaczmarz's Method

R-f=p

N x M M x 1 N x 1

/:;\

7| =1

o/

rn'.f:pn




Kaczmarz's Method (2)

« Successively solve r,, - f = p,
 To do so, project onto the hyperplanes

o (f +Arn) =y
A=p,—7Tn-f
Trnew = F + Ary
Foow =F + 70 (pn =70 f)
* Repeat until some convergence criterion is reached
o1 :fy+7“n(pn—7°n'fy)




Kaczmarz‘s Method (3)




Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique
(ART)

fy+1:fy+rn(pn_rn'fv)

T p_R.fy
S

fy+1:fu—|_




Kaczmarz's Method = ART

T -




Kaczmarz's Method = ART




apply inverse model

apply forward model
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Flavours of lterative Reconstruction

p_Rfr/

- ART .=f,+R".
f+1 f R2-1

1 RTp_Rfy

. SART —
f]/—f—l fi/_l_RTl R]_

RT . (e~ R-1))
R'. (e—P)

+ MLEM f,, = f,

RT . (e_R'fu R e_p)

+0sC  fon=Ffot o (c RI.R-T,)

« and hundreds more ...




Cost Functions

- General expression: f = arg m}n C(f)

- Examples: C(f) = (R-f—P)2
C(f)=W-(R-f-p)

2

C(f)= (W-(R-f—p)) +BP(f)

statistical additional
properties penalties
and
preconditioning




Linear PWLS

PWLS Cf)=R-f-p)" W-(R-f-p)+B8f" -Q-f
Gradient VCO(f)cR'-W.-(R-f—p)+8Q-f
Gradient update for1=f, —a,VC(f,)
At convergence VC(f_. ) =0

Fixed point foo = (RT'W'R+,BQ)_1 R' - W-p

A

Assume there exists j‘ such that R - f = p. Then everything reduces to a
shift variant image filter:

In case of shift invariance we can convert to Fourier domain:
high-pass

low-pass




Non-Linear PWLS

PWLS C(f)=(R-f-p)' W -(R-f—p)+BP(f)
| Gradient VC(f)O(RT'W‘(R'f_p)_'_%Q<f>.f
Gradient update Jor1=Ffo — oz,,VC’(fl,)
At convergence VC(f.) =0
Fixed point fo=(R" W -R+BQ(f.) ' R" W-p

Assume there exists j‘ such that R - j? — p. Then everything reduces to a
shift variant image filter:

foo=(R'-W-R+5Q(f.) " R W R-f




What Makes Iterative Recon Attractive?

No need to come find an analytical solution
Works for all geometries with only small adaptations
Allows to model any effect

Allows to incorporate prior knowledge
— nhoise properties (quantum noise, electronic noise, noise texture, ...)
— prior scans (e.g. planning CT, full scan data, ...)
— Iimage properties such as smoothness, edges (e.g. minimum TV)

Handles missing data implicitly (but not necessarily
better)

Phase-correlated Feldkamp High dimensional TV minimization’

[‘ A, q“_4 .‘. A
oy o
ok o Ry v
:.-'.. & bt -
L B -
-
»
yok

L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. KachelrieB, Phys. Med. Biol. 57, Jan. 2012 ¢ Z,




Downsides

Classical iterative recon is slow!
Classical iterative recon cannot do small FOVs.
There are many open parameters.
The reconstruction is non-linear.
Can we trust the images?




Ordered Subsets

Divide one iteration into S sub-iterations.
Each of these S subsets covers N/S projections.

During one iteration all subsets and therefore all
projections are used exactly once.

Per iteration the volume is updated S times (once per
sub-iteration).

An up to S-fold speed-up can be observed.




Ordered Subsets
lllustration for N = 32 Projections

Conventional procedure without subets (S=1)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with S = 8 sub-iterations

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31




Ordered Subsets

N

roe]
N
©
]
(=}
w
g

N
(3]
N
)]
r N
N
il

21
20
19
18
17
16
15
14
13
12

i
° 7
6 |
5 4

Np/ojections = 32, Ordered Subsets: Ng et = 8




Sequence Can be Generated Using
Simple Bit Reversal

16

8
24

4
20
12
28

2
18
10
26

6
22
14
30

1
17

9
25

5
21
13
29

K]
19
11
27

.
23
15
31

VoJdJoubdbWDNDR




Using Ordered Subsets Makes it Faster!

S =1 (no subsets) S = 32 (ordered subsets)

-

-

C =0 HU, W= 1000 HU




Image Updates

S =1 (no subsets) S = 32 (ordered subsets)

C =0 HU, W= 1000 HU




Reconstructing Small FOVs

N forward project

0 e————
e -
FBP FBP with clipped ROI

reconstruct
analytically

reconstruct
iteratively

—

Sinogram ROI sinogram IROI reconstruction
AXYgo = 0.04 mm

A. Ziegler, T. Nielsen, and M. Grass, “Iterative Reconstruction of Region of Interest for Transmission dkf
Tomography”, Med. Phys. 35 (4), Mar. 2008 e




lterative != lterative

* In many cases artifact correction is iterative
— Higher order beam hardening correction
— Cone-beam artifact correction
— Scatter correction

* Practical “iterative reconstruction” approaches
— often use empirical solutions
— combine iterative with analytical reconstruction

— combine iterative or analytical reconstruction with image
restoration

Phase-correlated Feldkamp Low dose phase-correlated (LDPC) recon’

e 12 AE N
Y. 1 /..'\Q:‘

1S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrie3, MedPhys 38(3), 2011 dkflo




lterative Reconstruction

Aim: less artifacts, lower noise, lower dose

Iterative reconstruction
— Reconstruct an image.
— Regularize the image.
— Does the image correspond to the rawdata?
— If not, reconstruct a correction image and continue.

SPECT + PET are iterative for a long time!

CT product implementations
— AIDR (adaptive iterative dose reduction, Toshiba)
— ASIR (adaptive statistical iterative reconstruction, GE)
— iDose (Philips)
— IMR (iterative model reconstruction, Philips)
— IRIS (image reconstruction in image space, Siemens) '
— VEO, MBIR (model-based iterative reconstruction, GE) |

— SAFIRE, ADMIRE (advanced model-based iterative reconstruction,
Siemens)




apply inverse model

e —

regularize regularize

rawdata image
A A

t

apply forward model |¢

Rawdata regularization: adaptive filtering', precorrections, filtering of
update sinograms...

Inverse model: backprojection (R") or filtered backprojection (R1). In
clinical CT, where the data are of high fidelity and nearly complete, one
would prefer filtered backprojection to increase convergence speed.
Image regularization: edge-preserving filtering. It may model physical
noise effects (amplitude, direction, correlations, ...). It may reduce noise
while preserving edges. It may include empirical corrections.

Forward model (R,,,): Models physical effects. It can reduce beam
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, ...

. KachelrieB et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001 dkflo




>| apply inverse model |

Conventional FBP with rawdata denoising (all vendors)

>| apply inverse model |

| apply forward model |e

Veo/MBIR (Ge)

>| apply inverse model |

—

o

regularize i
L

image
N "

ASIR (Ge), AIDR3D (Toshiba), IRIS (Siemens), iDose (Philips)
SnapShot Freeze (GE), iTRIM (Siemens)

>| apply inverse model |

regularize
image
N

{ apply forward model |e

SAFIRE, ADMIRE (Siemens)




Plain FBP Siemens Standard IRIS VA34 SAFIRE VA40

) . -
. ! . * - +
W

- .

e

Db

o =123 HU

apply inverse model apply inverse model apply inverse model apply inverse model

regu’” _e regul> s Y regularize regulz o i regularize regularize 5 regularize regularize
r  aata I ge o rawdata oge - rawdata image = rawdata image

applyf"“ﬂl(—l app\vfﬂ"ﬂk—, ﬂpplyfn“ﬂk—, apply forward model

CT images provided by Siemens Healthcare, Forchheim, Germany dkflo




Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA. dkflo




Filtered Backprojection
14 1 -~ y Philips, iCT 256
Stuay: 791w At FOV 160.0 mm

-2128 mm . P SW 0.80 mm
ECG: 75.0% Length: 164.7 mm

Ar: 302.8 mm sq Z21.00
Av: 1036 HU .
SD: 655

104 + 66 HU

c_”m
w1213

14 4
Studyf/91®
2128 mm
ECG: 75.0%

’

~

iDose 60%

<

Ar. 302.8. nm sq
Av: 1041 HU

SD: 406

Courtesy of Dr. Waldemar Hosch, Zlrich, Switzerland.

Philips, iCT 256
FOV 160.0 mm
SW0.80 mm
Length: 164.7 mm
Z1.00




Courtesy of Dr. Thomas Kéhler, Philips, Germany.




Filtered Backprojection SAFIRE SAFIRE

a Gy il
|26f strength 4 |36f strength 4

Courtesy of Siemens Healthcare, Forchheim, Germany.




Filtered Backprojection AIDR3D
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Courtesy of Dr M Chen, NHLBI, National Institutes of Health, USA dkfz.




Filtered Backprojection AIDR3D mild AIDR3D standard

P Ph
Wi WIL

LAD AIDR LAD AIDR !

Courtesy of Dr. Patrik Rogalla, UHN, Toronto, Canada




SIEMENS
=WFBP2Y
Diff (WFBP2 — WFBP)

WFBP, soft kernel |

Reduction

R R T
S0 % m.‘m it

o

Ise
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270e)

Diff (SAFIRE — WFBP)

7ty
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FBP

Figure provided by Siemens Healthcare, Forchheim, German
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Conventional reconstruction lterative reconstruction and restoration
at 100% dose at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany dkflo




Conventional reconstruction lterative reconstruction and restoration
at 100% dose at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany dkuo




Conventional reconstruction lterative reconstruction and restoration
at 100% dose at 40% dose

\ -’-’—-—v | | "-‘-.-v

Images provided by Siemens Healthcare, Forchheim, Germany dk‘fz.




Summary

- Analytical image reconstruction
— Is compute efficient
— requires new solutions for new trajectories
— Is what most images are reconstructed

with

- [terative image reconstruction
— requires much more computational effort
— allows to easily model constraints
— allows to incorporate prior knowledge

 Practical modern solutions

— often are a combination of analytical and
iterative recon

— are offered by the major manufacturers of
diagnostic CT

Images provided by Siemens Healthcare, Forchheim, Germany




Dose
reduction
values
iterative
compared to
analytical

image
reconstruction
claimed
by clinical
papers 2012
and earlier.

M. Kachelrie3, Current Cardiovascular Imaging Reports 6:268—281, 2013.

GE Philips Siemens Toshiba
Type Reference ASIR MBIR/Veo iDose IMR IRIS SAFIRE AIDR | AIDR3D
Cardiac [33] 38%*
Cardiac (36] >50%
Cardiac [37] 56%
Cardiac [29] 55%
Cardiac [25] 30%-45%*
Cardiac [20] 27%
Cardiac [38] 250%
Cardiac [34] 40%-51%
Cardiac [30] 52%*
Cardiac [35] 62%
Cardiac [45] 22%
Cardiac [39] 50%
Cardiac [46] 50%
Cardiac [21] 23% 60%
Cardiac [22] 29%
Cardiac [23] 36%
Cardiac (28] 29%
Abdominal/Chest [79] 32%-65%
Abdominal/Chest [80] 15%*
Abdominal/Chest [81] 42%
Abdominal/Chest [82] 80%-90%
Abdominal/Chest [83] 36%*
Abdominal/Chest [77] 38%-46%
Abdominal/Chest [40] 250%
Abdominal/Chest [84] >30%
Abdominal/Chest [85] 64%
Abdominal/Chest [86] 50%
Abdominal/Chest [87] 52%
Abdominal/Chest [88] 28%
Abdominal/Chest [24] 50%
Abdominal/Chest (89] 35%
Abdominal/Chest [90] 20%-80%*
Abdominal/Chest [91] 23%-66%
Abdominal/Chest [92] 40%
Abdominal/Chest [93] 50%
Abdominal/Chest [94) 50%
Abdominal/Chest [95] 34%
Abdominal/Chest [96] 41%
Abdominal/Chest [97] 25%
Abdominal/Chest (98] 38%
Abdominal/Chest [27] 75%
Head [99] 20%
Head [100] 60%
Head [101] 31%
Head [102] 26%
REVIEW (Cardiac) [17] 40%-50% 60%-70% 40%-50%
REVIEW (General) [16] 23%-76% 50%-76% 20%-60% 50% 52%
REVIEW (Cardiac) [18] 40% 30%-40%

dkfz.



Take Home Messages

Rebinning converts the fan-beam data to parallel beam.
FBP is an analytical image reconstruction algorithm.

FBP is the standard CT reconstruction algorithm.

Spiral data often require z-interpolation followed by FBP.
The spiral pitch value is definedas p=d/ M-S.

Iterative reconstruction promises less noise and artifacts.

Iterative reconstruction starts to replace FBP, however it
Is much more computational demanding.




Parts of the reconstructleﬁ' software were prowd by
RayConStruct® GmbH Nurnberg, ‘Germany




